Find the perimeter of loop of the curve 3ay²=x²(a-x)
"3ay^2=x^2(a-x),"
"y^2=\\frac{x^2(a-x)}{3a},"
"y=\\pm \\frac{x\\sqrt{a-x}}{\\sqrt{3a}}."
x=0: y=0;
x=a: y=0.
The curve is symmetrical about the x-axis and meets it in points (0, 0) and (a, 0), so the loop lies between this points:
To find the perimeter of the loop, we can double its part above the x-axis.
"P=2 \\int_0^a \\sqrt{1+(\\frac{dy}{dx})^2}dx."
"\\frac{dy}{dx}=\\frac{d}{dx}(\\frac{x\\sqrt{a-x}}{\\sqrt{3a}})=\\frac{1}{\\sqrt{3a}}(\\sqrt{a-x}-\\frac{x}{2\\sqrt{a-x}})="
"=\\frac{1}{\\sqrt{3a}}\\frac{2(a-x)-x}{2\\sqrt{a-x}}=\\frac{2a-3x}{2\\sqrt{3a}\\sqrt{a-x}}."
"1+(\\frac{dy}{dx})^2=1+(\\frac{2a-3x}{2\\sqrt{3a}\\sqrt{a-x}})^2="
"=1+\\frac{(2a-3x)^2}{12a(a-x)}=\\frac{12a^2-12ax+4a^2-12a+9x^2}{12a(a-x)}="
"=\\frac{16a^2-24ax+9x^2}{12a(a-x)}=\\frac{(4a-3x)^2}{12a(a-x)}."
So we have
"P=2 \\int_0^a \\sqrt{\\frac{(4a-3x)^2}{12a(a-x)}}dx=\\frac{2}{2\\sqrt{3a}} \\int_0^a \\frac{4a-3x}{\\sqrt{a-x}}dx=\n\\frac{1}{\\sqrt{3a}} \\int_0^a \\frac{4a-3x}{\\sqrt{a-x}}dx"
Substitution: "a-x=u" , "du=-dx," "x=a-u."
"x=0: u=a-x=a-0=a;"
"x=a: u=a-x=a-a=0."
"P=\\frac{1}{\\sqrt{3a}} \\int_0^a \\frac{4a-3x}{\\sqrt{a-x}}dx=-\\frac{1}{\\sqrt{3a}} \\int_a^0\\frac{4a-3(a-u)}{\\sqrt{u}}du=" s
"=-\\frac{1}{\\sqrt{3a}} \\int_a^0\\frac{a+3u}{\\sqrt{u}}du=-\\frac{1}{\\sqrt{3a}} \\int_a^0 (\\frac{a}{\\sqrt{u}}+3\\sqrt{u})du="
"=-\\frac{1}{\\sqrt{3a}} (2a\\sqrt{u}+2u\\sqrt{u})|_a^0="
"-\\frac{1}{\\sqrt{3a}}[ (2a\\sqrt{0}+2\\cdot 0 \\cdot \\sqrt{0})- (2a\\sqrt{a}+2a\\sqrt{a})]="
"=\\frac{4a\\sqrt{a}}{\\sqrt{3a}}=\\frac{4a}{\\sqrt{3}}."
Answer: "\\frac{4a}{\\sqrt{3}}."
Comments
Leave a comment