1. Let r = r= r = the radius of the base of the cylinder, let h = h= h = the height of the cylinder. Then
V = π r 2 h = 1000 c m 3 V=\pi r^2h=1000 {cm}^3 V = π r 2 h = 1000 c m 3
h = 1000 π r 2 h=\dfrac{1000}{\pi r^2} h = π r 2 1000 The total surface area of cylinder is
A = 2 ( π r 2 ) + 2 π r h A=2(\pi r^2)+2\pi rh A = 2 ( π r 2 ) + 2 π r h Substitute
A = A ( r ) = 2 π r 2 + 2 π r ( 1000 π r 2 ) A=A(r)=2\pi r^2+2\pi r(\dfrac{1000}{\pi r^2}) A = A ( r ) = 2 π r 2 + 2 π r ( π r 2 1000 )
= 2 π r 2 + 2000 r =2\pi r^2+\dfrac{2000}{ r} = 2 π r 2 + r 2000 Differentiate with respect to r r r
A ′ ( r ) = 4 π r − 2000 r 2 A'(r)=4\pi r-\dfrac{2000}{ r^2} A ′ ( r ) = 4 π r − r 2 2000 Find the critical number(s)
A ′ ( r ) = 0 = > 4 π r − 2000 r 2 = 0 A'(r)=0=>4\pi r-\dfrac{2000}{ r^2}=0 A ′ ( r ) = 0 => 4 π r − r 2 2000 = 0
r = 2000 4 π 3 r=\sqrt[3]{\dfrac{2000}{4\pi}} r = 3 4 π 2000
r = 5 4 π 3 r=5\sqrt[3]{\dfrac{4}{\pi}} r = 5 3 π 4 If 0 < r < 5 4 π 3 , A ′ ( r ) < 0 , A ( r ) 0<r<5\sqrt[3]{\dfrac{4}{\pi}}, A'(r)<0, A(r) 0 < r < 5 3 π 4 , A ′ ( r ) < 0 , A ( r ) decreases.
If r > 5 4 π 3 , A ′ ( r ) > 0 , A ( r ) r>5\sqrt[3]{\dfrac{4}{\pi}}, A'(r)>0, A(r) r > 5 3 π 4 , A ′ ( r ) > 0 , A ( r ) increases.
The function A ( r ) A(r) A ( r ) has the local minimum at r = 5 4 π 3 . r=5\sqrt[3]{\dfrac{4}{\pi}}. r = 5 3 π 4 .
Since the function A ( r ) A(r) A ( r ) has the only extremum, then the function A ( r ) A(r) A ( r ) has the absolute minimum at r = 5 4 π 3 . r=5\sqrt[3]{\dfrac{4}{\pi}}. r = 5 3 π 4 .
h = 1000 π ( 5 4 π 3 ) 2 = 10 4 π 3 h=\dfrac{1000}{\pi (5\sqrt[3]{\dfrac{4}{\pi}})^2}=10\sqrt[3]{\dfrac{4}{\pi}} h = π ( 5 3 π 4 ) 2 1000 = 10 3 π 4 r = 5 4 π 3 c m , h = 10 4 π 3 c m r=5\sqrt[3]{\dfrac{4}{\pi}}\ cm, h=10\sqrt[3]{\dfrac{4}{\pi}}\ cm r = 5 3 π 4 c m , h = 10 3 π 4 c m
2.
Let x = x= x = the first number. Then the second number will be 9 − x . 9-x. 9 − x .
Since two numbers are positive, then 0 < x < 9. 0<x<9. 0 < x < 9.
The product of two numbers is f ( x ) = x ( 9 − x ) . f(x)=x(9-x). f ( x ) = x ( 9 − x ) .
f ( x ) = − x 2 + 9 x f(x)=-x^2+9x f ( x ) = − x 2 + 9 x This quadratic function has the absolute maximum at
x = − 9 2 ( − 1 ) = 9 2 x=-\dfrac{9}{2(-1)}=\dfrac{9}{2} x = − 2 ( − 1 ) 9 = 2 9 The first number is 9 2 . \dfrac{9}{2}. 2 9 . The second number is 9 2 . \dfrac{9}{2}. 2 9 .
Comments