Answer to Question #346106 in Calculus for israa

Question #346106

1. Apply your mathematical models to your allocated car. Use the given data for the 0 – 28 m/s and 400m times to calculate the:




1. value of the coefficient A



2. maximum velocity



3. maximum acceleration.




Given: t (0-28 m/s) is 1.9s, t (400m) is 10.50s & tmaxspeed is 7.1s.



Given velocity equation :V (t) = A (1 - e^((-t)/(t maxspeed)))




i need step by step solution to understand




1
Expert's answer
2022-05-30T16:06:10-0400

 

v(t)=A(1et/tmaxspeed)v(t) = A (1-e ^ {- t/t_{maxspeed}})


Using the information that tmaxspeed=7.1 st_{maxspeed}=7.1\ s we have


v(t)=A(1et/7.1)v(t) = A (1-e ^ {- t/7.1})

Using the information that t(028m/s)t (0-28 m/s) is 1.9 s1.9\ s we have


v(1.9)=A(1e1.9/7.1)=28v(1.9) = A (1-e ^ {- 1.9/7.1})=28

A=281e1.9/7.1m/sA=\dfrac{28}{1-e ^ {- 1.9/7.1}}m/s

A=119.255 m/sA=119.255\ m/s

2.


vmax=v(tmaxspeed)=A(1etmaxspeed/tmaxspeed)v_{max}=v(t_{maxspeed})=A (1-e ^ {- t_{maxspeed}/t_{maxspeed}})

vmax=A(1e1)v_{max}=A(1-e^{-1})

vmax=119.255 m/s(1e1)v_{max}=119.255\ m/s\cdot(1-e^{-1})

vmax=75.387 m/sv_{max}=75.387\ m/s

3.


a(t)=dvdt=Atmaxspeed(et/tmaxspeed)a(t)=\dfrac{dv}{dt}=\dfrac{A}{t_{maxspeed}} (e ^ {- t/t_{maxspeed}})

=119.255 m/s7.1 s(et/7.1),0 st7.1 s=\dfrac{119.255\ m/s}{7.1\ s} (e ^ {- t/7.1}), 0\ s\le t\le7.1\ s

The function a(t)a(t) decreases for 0 st7.1 s.0\ s\le t\le7.1\ s.


amax=a(0)=119.255 m/s7.1 sa_{max}=a(0)=\dfrac{119.255\ m/s}{7.1\ s}

amax=16.797 m/s2a_{max}=16.797\ m/s^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment