1. Apply your mathematical models to your allocated car. Use the given data for the 0 – 28 m/s and 400m times to calculate the:
1. value of the coefficient A
2. maximum velocity
3. maximum acceleration.
Given: t (0-28 m/s) is 1.9s, t (400m) is 10.50s & tmaxspeed is 7.1s.
Given velocity equation :V (t) = A (1 - e^((-t)/(t maxspeed)))
i need step by step solution to understand
"v(t) = A (1-e ^ {- t\/t_{maxspeed}})"
Using the information that "t_{maxspeed}=7.1\\ s" we have
Using the information that "t (0-28 m\/s)" is "1.9\\ s" we have
"A=\\dfrac{28}{1-e ^ {- 1.9\/7.1}}m\/s"
"A=119.255\\ m\/s"
2.
"v_{max}=A(1-e^{-1})"
"v_{max}=119.255\\ m\/s\\cdot(1-e^{-1})"
"v_{max}=75.387\\ m\/s"
3.
"=\\dfrac{119.255\\ m\/s}{7.1\\ s} (e ^ {- t\/7.1}), 0\\ s\\le t\\le7.1\\ s"
The function "a(t)" decreases for "0\\ s\\le t\\le7.1\\ s."
"a_{max}=16.797\\ m\/s^2"
Comments
Leave a comment