Question #345989
  1. Use double integration to find the volume of the solid bounded from above by the paraboloid z = 9x2 + y2, below by the plane z = 0, laterally by y=x^2 and y=x.
1
Expert's answer
2022-05-31T16:28:35-0400

ANSWER The volume of the solid is 17350.4857\frac{17}{35} \cong 0.4857

EXPLANATION

Volume =D(9x2+y2)dydx=\iint_{D}\left (9x^2+y^2 \right )dydx ,

where

D={(x,y):0x1,x2yx}D=\left \{ (x,y):0\leq x\leq 1, \, x^{2 }\leq y\leq x \right \}

\iint_{D}\left (9x^2+y^2 \right )dydx=\int_{0}^{1} \left ( \int_{x^{2} }^{x}\left ( 9x^2+y^2 \right ) dy\right )dx\. Since x2x(9x2+y2)dy=[9x2y+y33]y=x2y=x=(9x39x4+x33x63)\int_{x^{2} }^{x}\left ( 9x^2+y^2 \right ) dy =\left [ 9x^{2}y+\frac{y^3}{3} \right ]_{y=x^2}^{y=x}=\left ( 9x^3-9x^4+\frac{x^3}{3}-\frac{x^{6} }{3} \right ) , then 01(9x39x4+x33x63)dx=[9x449x55+x412x721]01=2451895105=17350.4857\int_{0}^{1}\left ( 9x^3-9x^4+\frac{x^3}{3}-\frac{x^{6} }{3} \right )dx=\left [ \frac{9x^{4}}{4}-\frac{9x^{5}}{5} +\frac{x^{4}}{12}-\frac{x^{7}}{21}\right ]_{0}^{1}= \frac{245-189-5}{ 105} =\frac{17}{35} \cong 0.4857


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS