In=0∫∞e−xsinnxdx=0∫∞(−e−x)′sinnxdx=−e−xsinnx∣∣0∞+0∫∞e−x⋅nsinn−1xcosxdx=0+n0∫∞(−e−x)′⋅sinn−1xcosxdx=−ne−xsinn−1xcosxdx∣∣0∞+n0∫∞e−x((n−1)sinn−2xcos2x−sinnxdx)dx=0+n(n−1)0∫∞e−xsinn−2(1−sin2x)dx−n0∫∞e−xsinnxdx=n(n−1)In−2−n(n−1)In−nIn
In=n(n−1)In−2−n(n−1)In−nIn
(n2+1)In=n(n−1)In−2
Comments
Leave a comment