if In = 0∫∞ e-xsinn(x)dx , prove that (1+n2)In = n(n-1) In-2 for n >= 2
"I_n=\\int\\limits_0^\\infty e^{-x}\\sin^nx dx\n\\\\\n=\\int\\limits_0^\\infty (-e^{-x})^\\prime \\sin^nx dx\n\\\\=-e^{-x}\\sin^nx\\big|_0^\\infty+\\int\\limits_0^\\infty e^{-x}\\cdot n\\sin^{n-1}x\\cos xdx \n\\\\\n=0+n \\int\\limits_0^\\infty (-e^{-x})^\\prime \\cdot\\sin^{n-1}x\\cos xdx \n\\\\\n=-ne^{-x}\\sin^{n-1}x\\cos xdx \\big|_0^\\infty+n\\int\\limits_0^\\infty e^{-x}\\bigg( (n-1)\\sin^{n-2}x\\cos^2 x-\\sin^n xdx\\bigg)dx\n\\\\\n=0+n(n-1)\\int\\limits_0^\\infty e^{-x}\\sin^{n-2}(1-\\sin^2x)dx-n\\int\\limits_0^\\infty e^{-x}\\sin^nxdx \n\\\\\n=n(n-1)I_{n-2}-n(n-1)I_n-nI_n"
"I_n=n(n-1)I_{n-2}-n(n-1)I_n-nI_n"
"(n^2+1)I_n=n(n-1)I_{n-2}"
Comments
Leave a comment