Answer to Question #345841 in Calculus for Roy

Question #345841

 if In = 0∫∞ e-xsinn(x)dx , prove that (1+n2)In = n(n-1) In-2 for n >= 2


1
Expert's answer
2022-05-31T12:24:28-0400

In=0exsinnxdx=0(ex)sinnxdx=exsinnx0+0exnsinn1xcosxdx=0+n0(ex)sinn1xcosxdx=nexsinn1xcosxdx0+n0ex((n1)sinn2xcos2xsinnxdx)dx=0+n(n1)0exsinn2(1sin2x)dxn0exsinnxdx=n(n1)In2n(n1)InnInI_n=\int\limits_0^\infty e^{-x}\sin^nx dx \\ =\int\limits_0^\infty (-e^{-x})^\prime \sin^nx dx \\=-e^{-x}\sin^nx\big|_0^\infty+\int\limits_0^\infty e^{-x}\cdot n\sin^{n-1}x\cos xdx \\ =0+n \int\limits_0^\infty (-e^{-x})^\prime \cdot\sin^{n-1}x\cos xdx \\ =-ne^{-x}\sin^{n-1}x\cos xdx \big|_0^\infty+n\int\limits_0^\infty e^{-x}\bigg( (n-1)\sin^{n-2}x\cos^2 x-\sin^n xdx\bigg)dx \\ =0+n(n-1)\int\limits_0^\infty e^{-x}\sin^{n-2}(1-\sin^2x)dx-n\int\limits_0^\infty e^{-x}\sin^nxdx \\ =n(n-1)I_{n-2}-n(n-1)I_n-nI_n



In=n(n1)In2n(n1)InnInI_n=n(n-1)I_{n-2}-n(n-1)I_n-nI_n



(n2+1)In=n(n1)In2(n^2+1)I_n=n(n-1)I_{n-2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment