Find the center of mass of the region bounded by y=(x-2)^2 and y=4.
"x_1=0, x_2=4"
"=16-\\dfrac{8}{3}-(0+\\dfrac{8}{3})=\\dfrac{32}{3}"
"\\bar{x}=\\dfrac{1}{A}\\displaystyle\\int_{0}^{4}x(4-(x-2)^2)dx"
"=\\dfrac{3}{32}\\displaystyle\\int_{0}^{4}(-x^3+4x^2)dx=\\dfrac{3}{32}[-\\dfrac{x^4}{4}+\\dfrac{4x^3}{3}]\\begin{matrix}\n4 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{3}{32}(-64+\\dfrac{256}{3})=2"
"=\\dfrac{3}{64}\\displaystyle\\int_{0}^{4}(x^4-8x^3+16x^2)dx"
"=\\dfrac{3}{64}[\\dfrac{x^5}{5}-2x^4+\\dfrac{16x^3}{3}]\\begin{matrix}\n4 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{3}{64}(\\dfrac{1024}{5}-512+\\dfrac{1024}{3})=\\dfrac{8}{5}"
"(2, \\dfrac{8}{5})"
Comments
Leave a comment