Volume of the Solid (Shell Method)
Given the bounded region is revolved about y axis, find the volume of the solid generated.
The region below the curve y= Inx, above the x-axis, and to the left of the line x=4.
"\\int x\\ln x dx"
"u=\\ln x, du=\\dfrac{dx}{x}"
"dv=xdx, v=\\dfrac{x^2}{2}"
"\\int x\\ln x dx=\\dfrac{x^2\\ln x}{2}-\\dfrac{1}{2}\\int xdx"
"=\\dfrac{x^2\\ln x}{2}-\\dfrac{x^2}{4}+C"
"V=2\\pi\\displaystyle\\int_{0}^4x\\ln xdx"
"=2\\pi\\lim\\limits_{t\\to 0^+}\\displaystyle\\int_{t}^4x\\ln xdx"
"=2\\pi\\lim\\limits_{t\\to 0^+}[\\dfrac{x^2\\ln x}{2}-\\dfrac{x^2}{4}]\\begin{matrix}\n 4 \\\\\n t\n\\end{matrix}"
"=2\\pi(\\dfrac{4^2\\ln 4}{42}-\\dfrac{4^2}{4}-(0-0))"
"=8\\pi(4\\ln 2-1)\\ ({units^3})"
Comments
Leave a comment