Question #345477

Volume of the Solid (Shell Method)


Given the bounded region is revolved about y axis, find the volume of the solid generated.


The region below the curve y= Inx, above the x-axis, and to the left of the line x=4.


1
Expert's answer
2022-05-30T03:56:45-0400
V=2π04xlnxdxV=2\pi\displaystyle\int_{0}^4x\ln xdx

xlnxdx\int x\ln x dx

u=lnx,du=dxxu=\ln x, du=\dfrac{dx}{x}

dv=xdx,v=x22dv=xdx, v=\dfrac{x^2}{2}

xlnxdx=x2lnx212xdx\int x\ln x dx=\dfrac{x^2\ln x}{2}-\dfrac{1}{2}\int xdx

=x2lnx2x24+C=\dfrac{x^2\ln x}{2}-\dfrac{x^2}{4}+C

V=2π04xlnxdxV=2\pi\displaystyle\int_{0}^4x\ln xdx

=2πlimt0+t4xlnxdx=2\pi\lim\limits_{t\to 0^+}\displaystyle\int_{t}^4x\ln xdx

=2πlimt0+[x2lnx2x24]4t=2\pi\lim\limits_{t\to 0^+}[\dfrac{x^2\ln x}{2}-\dfrac{x^2}{4}]\begin{matrix} 4 \\ t \end{matrix}

=2π(42ln442424(00))=2\pi(\dfrac{4^2\ln 4}{42}-\dfrac{4^2}{4}-(0-0))

=8π(4ln21) (units3)=8\pi(4\ln 2-1)\ ({units^3})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS