ANSWER: Area of region ≅ 5.0118 \cong 5.0118 ≅ 5.0118
EXPLANATION:
Let D = { ( x , y ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ x 2 + 5 } , A = A r e a D=\left \{ (x,y):0\leq x\leq2,\, 0\leq y\leq \sqrt{x^{2}+5} \right \} , A=Area D = { ( x , y ) : 0 ≤ x ≤ 2 , 0 ≤ y ≤ x 2 + 5 } , A = A re a of D D D , then
A = ∫ 0 2 x 2 + 5 d x A=\int_{0}^{2}\sqrt{x^{2}+5}dx A = ∫ 0 2 x 2 + 5 d x
We calculate the integral by parts : denote u = x 2 + 5 , d v = d x u= \sqrt{x^{2}+5} ,\, dv=dx\, u = x 2 + 5 , d v = d x . Therefore , v = x , d u = 2 x 2 x 2 + 5 = x x 2 + 5 v=x, \, du=\frac{2x}{2\sqrt{x^{2}+5}}=\frac{ x}{ \sqrt{x^{2}+5}} v = x , d u = 2 x 2 + 5 2 x = x 2 + 5 x and
A = [ x ⋅ x 2 + 5 ] 0 2 − ∫ 0 2 x 2 x 2 + 5 d x = [ 2 ⋅ 2 2 + 5 − 0 ] − ∫ 0 2 x 2 + 5 − 5 x 2 + 5 d x = 6 − A + 5 ⋅ ∫ 0 2 1 x 2 + 5 d x = 6 − A + 5 ⋅ [ ln ∣ x + x 2 + 5 ∣ ] 0 2 = 6 − A + 5 ⋅ ( ln ( 2 + 3 ) − ln 5 ) = 6 − A + 5 ln 5 5 = 6 − A + 5 ⋅ 1 2 ln 5. A=\left [ x\cdot \sqrt{x^{2}+5} \right ]_{0}^{2}-\int_{0}^{2}\frac{x^{2}}{\sqrt{x^{2}+5}}dx=\left [ 2\cdot \sqrt{2^{2}+5}-0 \right ] -\int_{0}^{2}\frac{x^{2}+5-5}{\sqrt{x^{2}+5}}dx=6-A+5\cdot \int_{0}^{2}\frac{1}{\sqrt{x^{2}+5}}dx=6-A+5\cdot \left [ \ln \left | x+\sqrt{x^{2}+5} \right | \right ]_{0}^{2}=6-A+5\cdot \left ( \ln (2+3) -\ln \sqrt{5}\right )=6-A+5\ln \frac{5}{\sqrt{5}}=6-A+5\cdot\frac{1}{2}\ln 5 . A = [ x ⋅ x 2 + 5 ] 0 2 − ∫ 0 2 x 2 + 5 x 2 d x = [ 2 ⋅ 2 2 + 5 − 0 ] − ∫ 0 2 x 2 + 5 x 2 + 5 − 5 d x = 6 − A + 5 ⋅ ∫ 0 2 x 2 + 5 1 d x = 6 − A + 5 ⋅ [ ln ∣ ∣ x + x 2 + 5 ∣ ∣ ] 0 2 = 6 − A + 5 ⋅ ( ln ( 2 + 3 ) − ln 5 ) = 6 − A + 5 ln 5 5 = 6 − A + 5 ⋅ 2 1 ln 5.
From the equality A = 6 − A + 5 ⋅ 1 2 ln 5 A=6-A+5\cdot\frac{1}{2}\ln 5 A = 6 − A + 5 ⋅ 2 1 ln 5 it follows A = 3 + 5 4 ln 5 ≅ 5.0118. A=3+\frac{5}{4}\ln 5 \cong 5.0118. A = 3 + 4 5 ln 5 ≅ 5.0118.
Comments