ANSWER: Area of region ≅5.0118
EXPLANATION:
Let D={(x,y):0≤x≤2,0≤y≤x2+5},A=Area of D , then
A=∫02x2+5dx
We calculate the integral by parts : denote u=x2+5,dv=dx . Therefore , v=x,du=2x2+52x=x2+5x and
A=[x⋅x2+5]02−∫02x2+5x2dx=[2⋅22+5−0]−∫02x2+5x2+5−5dx=6−A+5⋅∫02x2+51dx=6−A+5⋅[ln∣∣x+x2+5∣∣]02=6−A+5⋅(ln(2+3)−ln5)=6−A+5ln55=6−A+5⋅21ln5.
From the equality A=6−A+5⋅21ln5 it follows A=3+45ln5≅5.0118.
Comments
Leave a comment