find the area of the region in the first quadrant by bounded by the curve y=sqrt x^2+5, the x-axis and the line x=2
ANSWER: Area of region "\\cong 5.0118"
EXPLANATION:
Let "D=\\left \\{ (x,y):0\\leq x\\leq2,\\, 0\\leq y\\leq \\sqrt{x^{2}+5} \\right \\} , A=Area" of "D" , then
"A=\\int_{0}^{2}\\sqrt{x^{2}+5}dx"
We calculate the integral by parts : denote "u= \\sqrt{x^{2}+5} ,\\, dv=dx\\," . Therefore , "v=x, \\, du=\\frac{2x}{2\\sqrt{x^{2}+5}}=\\frac{ x}{ \\sqrt{x^{2}+5}}" and
"A=\\left [ x\\cdot \\sqrt{x^{2}+5} \\right ]_{0}^{2}-\\int_{0}^{2}\\frac{x^{2}}{\\sqrt{x^{2}+5}}dx=\\left [ 2\\cdot \\sqrt{2^{2}+5}-0 \\right ] -\\int_{0}^{2}\\frac{x^{2}+5-5}{\\sqrt{x^{2}+5}}dx=6-A+5\\cdot \\int_{0}^{2}\\frac{1}{\\sqrt{x^{2}+5}}dx=6-A+5\\cdot \\left [ \\ln \\left | x+\\sqrt{x^{2}+5} \\right | \\right ]_{0}^{2}=6-A+5\\cdot \\left ( \\ln (2+3) -\\ln \\sqrt{5}\\right )=6-A+5\\ln \\frac{5}{\\sqrt{5}}=6-A+5\\cdot\\frac{1}{2}\\ln 5 ."
From the equality "A=6-A+5\\cdot\\frac{1}{2}\\ln 5" it follows "A=3+\\frac{5}{4}\\ln 5 \\cong 5.0118."
Comments
Leave a comment