write (2-i)(4-3i)^2/3+2i in the form a+bi where a,b,er.
"\\cfrac{(2-i)(4-3i)^2}{3+2i} = \\cfrac{(2-i)(16-24i-9)}{3+2i} =\\cfrac{(2-i)(7-24i)}{3+2i} = \\\\ \n=\\cfrac{14-48i-7i-24}{3+2i}\n=\\cfrac{-10-55i}{3+2i} \\\\\n=\\cfrac{-10\\cdot3 -55\\cdot2}{9+4}+\\cfrac{-10\\cdot2-55\\cdot3}{9+4}i= -\\cfrac{140}{13}-\\cfrac{145}{13}i"
Comments
Leave a comment