write (2-i)(4-3i)^2/3+2i in the form a+bi where a,b,er.
(2−i)(4−3i)23+2i=(2−i)(16−24i−9)3+2i=(2−i)(7−24i)3+2i==14−48i−7i−243+2i=−10−55i3+2i=−10⋅3−55⋅29+4+−10⋅2−55⋅39+4i=−14013−14513i\cfrac{(2-i)(4-3i)^2}{3+2i} = \cfrac{(2-i)(16-24i-9)}{3+2i} =\cfrac{(2-i)(7-24i)}{3+2i} = \\ =\cfrac{14-48i-7i-24}{3+2i} =\cfrac{-10-55i}{3+2i} \\ =\cfrac{-10\cdot3 -55\cdot2}{9+4}+\cfrac{-10\cdot2-55\cdot3}{9+4}i= -\cfrac{140}{13}-\cfrac{145}{13}i3+2i(2−i)(4−3i)2=3+2i(2−i)(16−24i−9)=3+2i(2−i)(7−24i)==3+2i14−48i−7i−24=3+2i−10−55i=9+4−10⋅3−55⋅2+9+4−10⋅2−55⋅3i=−13140−13145i
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments