Question #344821

write (2-i)(4-3i)^2/3+2i in the form a+bi where a,b,er.


1
Expert's answer
2022-05-27T10:39:23-0400

(2i)(43i)23+2i=(2i)(1624i9)3+2i=(2i)(724i)3+2i==1448i7i243+2i=1055i3+2i=1035529+4+1025539+4i=1401314513i\cfrac{(2-i)(4-3i)^2}{3+2i} = \cfrac{(2-i)(16-24i-9)}{3+2i} =\cfrac{(2-i)(7-24i)}{3+2i} = \\ =\cfrac{14-48i-7i-24}{3+2i} =\cfrac{-10-55i}{3+2i} \\ =\cfrac{-10\cdot3 -55\cdot2}{9+4}+\cfrac{-10\cdot2-55\cdot3}{9+4}i= -\cfrac{140}{13}-\cfrac{145}{13}i


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS