Question #344819

1) Find the area bounded by the curve y=9-x and the x axis.




a) Horizontal Strip





b) Vertical Strip

1
Expert's answer
2022-05-26T07:56:24-0400

1)



9x2=0=>x1=3,x2=39-x^2=0=>x_1=-3, x_2=3

a)



y=9x2=>x=9y or x=9yy=9-x^2=>x=-\sqrt{9-y}\ or \ x=\sqrt{9-y}A=09(9y(9y))dyA=\displaystyle\int_{0}^{9}(\sqrt{9-y}-(-\sqrt{9-y}))dy=2099ydy=2[23(9y)3/2]90=2\displaystyle\int_{0}^{9}\sqrt{9-y}dy=2\big[-\dfrac{2}{3}(9-y)^{3/2}\big]\begin{matrix} 9 \\ 0 \end{matrix}=43((99)3/2(90)3/2)=36(units2)=-\dfrac{4}{3}((9-9)^{3/2}-(9-0)^{3/2})=36({units}^2)


b)



A=33(9x2)dx=[9xx33]33A=\displaystyle\int_{-3}^{3}(9-x^2)dx=\big[9x-\dfrac{x^3}{3}\big]\begin{matrix} 3 \\ -3 \end{matrix}9(3)(3)33(9(3)(3)33)=36(units2)9(3)-\dfrac{(3)^3}{3}-(9(-3)-\dfrac{(-3)^3}{3})=36({units}^2)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS