Answer to Question #345096 in Calculus for pher

Question #345096

Water is flowing into a conical vessel 18 cm deep and 10 cm across the top at the rate of 4 cm3/min. The depth of the water is "h" cm. If the rate which the surface is rising is 0.1146 cm/min, find the value of "h"?



1
Expert's answer
2022-05-27T09:33:45-0400

D=2R=10cmD=2R=10 cm ; H=18cmH=18cm ; dvdt=4cm3min\frac{dv}{dt}=4\frac{cm^3}{min} ; dhdt=0.1146cmmin\frac{dh}{dt}=0.1146\frac{cm}{min} .

Solution:

Filled volume:

v=13πr2hv=\frac13\pi r^2h ; r=htanθr=h\cdot \tan\theta ;

v=13πtan2θh3v=\frac13\pi \cdot\tan^2\theta \cdot h^3 ;

tanθ=RH=D2H\tan{\theta}=\frac RH=\frac{D}{2H} ;

v=13π(D2H)2h3v=\frac13\pi \cdot(\frac{D}{2H})^2 \cdot h^3

dvdt=π(D2H)2h2dhdt\frac{dv}{dt}=\pi \cdot(\frac{D}{2H})^2 \cdot h^2\cdot\frac{dh}{dt}

h=2HD1πdhdtdvdt=h=\frac{2H}{D}\cdot\sqrt{\frac{1}{\pi \cdot\frac{dh}{dt}} \cdot\frac{dv}{dt}}=218101π0.114642181040.36=12 (cm)\frac{2\cdot 18}{10}\cdot\sqrt{\frac{1}{\pi \cdot0.1146} \cdot4}\approx\frac{2\cdot 18}{10}\cdot\sqrt{\frac{4}{0.36}}=12\ (cm) .

Answer: h12 cmh\approx12\ cm .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment