) Solve the area bounded by the curve y = 4x-x² and the lines x = -2 and y = 4.
The area of the region bounded by the curves equals a definite integral between the points of intersection of these curves: -2 and 2:
"A=\\int_{-2}^2(y_2-y_1)dx=\\int_{-2}^2(4-4x+x^2)dx="
"=(4x-4\\frac{x^2}{2}+\\frac{x^3}{3})|_{-2}^2=(4x-2x^2+\\frac{x^3}{3})|_{-2}^2="
"=(4\\cdot2-2\\cdot2^2+\\frac{2^3}{3})-(4\\cdot(-2)-2\\cdot(-2)^2+\\frac{(-2)^3}{3})="
"=(8-8+\\frac{8}{3})-(-8-8-\\frac{8}{3})=\\frac{8}{3}+8+8+\\frac{8}{3}="
"=16+\\frac{16}{3}=16+5\\frac{1}{3}=21\\frac{1}{3}."
Answer: "21\\frac{1}{3}."
Comments
Leave a comment