4) Find each of the two areas bounded by the curves y=x³-4x and y = x² + 21.
Find each of the two areas bounded by the curves "y=x^3-4x" and"y=x^2+2x."
"x(x^2-x-6)=0"
"x(x+2)(x-3)=0"
"x_1=-2, x_2=0, x_3=3"
"A_1=\\displaystyle\\int_{-2}^{0}(x^3-4x-(x^2+2x))dx"
"=[\\dfrac{x^4}{4}-\\dfrac{x^3}{3}-3x^2]\\begin{matrix}\n 0 \\\\\n -2\n\\end{matrix}"
"=0-(\\dfrac{(-2)^4}{4}-\\dfrac{(-2)^3}{3}-3(-2)^2)"
"=\\dfrac{16}{3}({units}^2)"
"=[-\\dfrac{x^4}{4}+\\dfrac{x^3}{3}+3x^2]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}"
"=-\\dfrac{(3)^4}{4}+\\dfrac{(3)^3}{3}+3(3)^2-0"
"=\\dfrac{63}{4}({units}^2)"
Comments
Leave a comment