Answer to Question #345145 in Calculus for Jane

Question #345145

4) Find each of the two areas bounded by the curves y=x³-4x and y = x² + 21.

1
Expert's answer
2022-05-30T05:37:49-0400

Find each of the two areas bounded by the curves "y=x^3-4x" and"y=x^2+2x."



"x^3-4x=x^2+2x"

"x(x^2-x-6)=0"

"x(x+2)(x-3)=0"

"x_1=-2, x_2=0, x_3=3"

"A_1=\\displaystyle\\int_{-2}^{0}(x^3-4x-(x^2+2x))dx"

"=[\\dfrac{x^4}{4}-\\dfrac{x^3}{3}-3x^2]\\begin{matrix}\n 0 \\\\\n -2\n\\end{matrix}"

"=0-(\\dfrac{(-2)^4}{4}-\\dfrac{(-2)^3}{3}-3(-2)^2)"

"=\\dfrac{16}{3}({units}^2)"


"A_2=\\displaystyle\\int_{0}^{3}(x^2+2x-(x^3-4x))dx"

"=[-\\dfrac{x^4}{4}+\\dfrac{x^3}{3}+3x^2]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}"

"=-\\dfrac{(3)^4}{4}+\\dfrac{(3)^3}{3}+3(3)^2-0"

"=\\dfrac{63}{4}({units}^2)"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS