Question #345145

4) Find each of the two areas bounded by the curves y=x³-4x and y = x² + 21.

1
Expert's answer
2022-05-30T05:37:49-0400

Find each of the two areas bounded by the curves y=x34xy=x^3-4x andy=x2+2x.y=x^2+2x.



x34x=x2+2xx^3-4x=x^2+2x

x(x2x6)=0x(x^2-x-6)=0

x(x+2)(x3)=0x(x+2)(x-3)=0

x1=2,x2=0,x3=3x_1=-2, x_2=0, x_3=3

A1=20(x34x(x2+2x))dxA_1=\displaystyle\int_{-2}^{0}(x^3-4x-(x^2+2x))dx

=[x44x333x2]02=[\dfrac{x^4}{4}-\dfrac{x^3}{3}-3x^2]\begin{matrix} 0 \\ -2 \end{matrix}

=0((2)44(2)333(2)2)=0-(\dfrac{(-2)^4}{4}-\dfrac{(-2)^3}{3}-3(-2)^2)

=163(units2)=\dfrac{16}{3}({units}^2)


A2=03(x2+2x(x34x))dxA_2=\displaystyle\int_{0}^{3}(x^2+2x-(x^3-4x))dx

=[x44+x33+3x2]30=[-\dfrac{x^4}{4}+\dfrac{x^3}{3}+3x^2]\begin{matrix} 3 \\ 0 \end{matrix}

=(3)44+(3)33+3(3)20=-\dfrac{(3)^4}{4}+\dfrac{(3)^3}{3}+3(3)^2-0

=634(units2)=\dfrac{63}{4}({units}^2)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS