Find each of the two areas bounded by the curves y=x3−4x andy=x2+2x.
x3−4x=x2+2x
x(x2−x−6)=0
x(x+2)(x−3)=0
x1=−2,x2=0,x3=3
A1=∫−20(x3−4x−(x2+2x))dx
=[4x4−3x3−3x2]0−2
=0−(4(−2)4−3(−2)3−3(−2)2)
=316(units2)
A2=∫03(x2+2x−(x3−4x))dx
=[−4x4+3x3+3x2]30
=−4(3)4+3(3)3+3(3)2−0
=463(units2)
Comments