tan ( x + y ) = e z 2 \tan(\sqrt{x}+y)=e^{z^2} tan ( x + y ) = e z 2 Differentiate both sides with respect to x x x
1 cos 2 ( x + y ) ( 1 2 x ) = 2 z e z 2 ∂ z ∂ x \dfrac{1}{\cos ^2(\sqrt{x}+y)}(\dfrac{1}{2\sqrt{x}})=2ze^{z^2}\dfrac{\partial z}{\partial x} cos 2 ( x + y ) 1 ( 2 x 1 ) = 2 z e z 2 ∂ x ∂ z
∂ z ∂ x = 1 4 z e z 2 x cos 2 ( x + y ) \dfrac{\partial z}{\partial x}=\dfrac{1}{4ze^{z^2}\sqrt{x}\cos ^2(\sqrt{x}+y)} ∂ x ∂ z = 4 z e z 2 x cos 2 ( x + y ) 1
tan ( x + y ) = e z 2 \tan(\sqrt{x}+y)=e^{z^2} tan ( x + y ) = e z 2 Differentiate both sides with respect to y y y
1 cos 2 ( x + y ) ( 1 ) = 2 z e z 2 ∂ z ∂ y \dfrac{1}{\cos ^2(\sqrt{x}+y)}(1)=2ze^{z^2}\dfrac{\partial z}{\partial y} cos 2 ( x + y ) 1 ( 1 ) = 2 z e z 2 ∂ y ∂ z
∂ z ∂ y = 1 2 z e z 2 cos 2 ( x + y ) \dfrac{\partial z}{\partial y}=\dfrac{1}{2ze^{z^2}\cos ^2(\sqrt{x}+y)} ∂ y ∂ z = 2 z e z 2 cos 2 ( x + y ) 1
Comments