Inregrate ∫cosxdxsin2x\int \frac{\cos x dx}{\sin^2 x}∫sin2xcosxdx
∫cosxdxsin2x=[t=sinx,dt=cosxdx]=∫dtt2=−1t+C=−1sinx+C\int \cfrac{\cos x dx}{\sin^2x} = [t = \sin x, dt = \cos x dx] = \int \cfrac{dt}{t^2} = -\cfrac{1}{t}+C=-\cfrac{1}{\sin x}+C∫sin2xcosxdx=[t=sinx,dt=cosxdx]=∫t2dt=−t1+C=−sinx1+C
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments