f ( x ) = sin − 1 ( x ) f(x)=\sin^{-1}(x) f ( x ) = sin − 1 ( x )
f ′ ( x ) = 1 1 − x 2 f'(x)=\dfrac{1}{\sqrt{1-x^2}} f ′ ( x ) = 1 − x 2 1
f ′ ′ ( x ) = − 1 2 ( 1 − x 2 ) 3 / 2 ( − 2 x ) = x ( 1 − x 2 ) 3 / 2 f''(x)=-\dfrac{1}{2(1-x^2)^{3/2}}(-2x)=\dfrac{x}{(1-x^2)^{3/2}} f ′′ ( x ) = − 2 ( 1 − x 2 ) 3/2 1 ( − 2 x ) = ( 1 − x 2 ) 3/2 x Then
( 1 − x 2 ) f ′ ′ ( x ) − x f ′ ( x ) ( 1-x^2) f''(x) -xf'(x) ( 1 − x 2 ) f ′′ ( x ) − x f ′ ( x )
= ( 1 − x 2 ) ( x ( 1 − x 2 ) 3 / 2 ) − x ( 1 1 − x 2 ) =(1-x^2)(\dfrac{x}{(1-x^2)^{3/2}})-x(\dfrac{1}{\sqrt{1-x^2}}) = ( 1 − x 2 ) ( ( 1 − x 2 ) 3/2 x ) − x ( 1 − x 2 1 )
= x 1 − x 2 − x 1 − x 2 = 0 , − 1 < x < 1 =\dfrac{x}{\sqrt{1-x^2}}-\dfrac{x}{\sqrt{1-x^2}}=0, -1<x<1 = 1 − x 2 x − 1 − x 2 x = 0 , − 1 < x < 1
( 1 − x 2 ) f ′ ′ ( x ) − x f ′ ( x ) = 0 ( 1-x^2) f''(x) -xf'(x)=0 ( 1 − x 2 ) f ′′ ( x ) − x f ′ ( x ) = 0
( 1 − x 2 ) f ′ ′ ( x ) = x f ′ ( x ) ( 1-x^2) f''(x)=xf'(x) ( 1 − x 2 ) f ′′ ( x ) = x f ′ ( x ) Differentiate with respect to x x x
− 2 x f ′ ′ ( x ) + ( 1 − x 2 ) f ′ ′ ′ ( x ) = f ′ ( x ) + x f ′ ′ ( x ) -2xf''(x)+( 1-x^2) f'''(x) =f'(x)+xf''(x) − 2 x f ′′ ( x ) + ( 1 − x 2 ) f ′′′ ( x ) = f ′ ( x ) + x f ′′ ( x )
( 1 − x 2 ) f ′ ′ ′ ( x ) = f ′ ( x ) + 3 x f ′ ′ ( x ) ( 1-x^2) f'''(x) =f'(x)+3xf''(x) ( 1 − x 2 ) f ′′′ ( x ) = f ′ ( x ) + 3 x f ′′ ( x ) Differentiate with respect to x x x
( 1 − x 2 ) f ( 4 ) ( x ) − 2 x f ′ ′ ′ ( x ) = f ′ ′ ( x ) + 3 f ′ ′ ( x ) ( 1-x^2)f^{(4)}(x)-2xf'''(x)=f''(x)+3f''(x) ( 1 − x 2 ) f ( 4 ) ( x ) − 2 x f ′′′ ( x ) = f ′′ ( x ) + 3 f ′′ ( x )
+ 3 x f ′ ′ ′ ( x ) +3xf'''(x) + 3 x f ′′′ ( x )
( 1 − x 2 ) f ( 4 ) ( x ) = 4 f ′ ′ ( x ) + 5 x f ′ ′ ′ ( x ) ( 1-x^2)f^{(4)}(x)=4f''(x)+5xf'''(x) ( 1 − x 2 ) f ( 4 ) ( x ) = 4 f ′′ ( x ) + 5 x f ′′′ ( x ) Differentiate with respect to x x x
( 1 − x 2 ) f ( 5 ) ( x ) − 2 x f ( 4 ) ( x ) = 4 f ′ ′ ′ ( x ) + 5 f ′ ′ ′ ( x ) ( 1-x^2)f^{(5)}(x)-2xf^{(4)}(x)=4f'''(x)+5f'''(x) ( 1 − x 2 ) f ( 5 ) ( x ) − 2 x f ( 4 ) ( x ) = 4 f ′′′ ( x ) + 5 f ′′′ ( x )
+ 5 x f ( 4 ) ( x ) +5xf^{(4)}(x) + 5 x f ( 4 ) ( x )
( 1 − x 2 ) f ( 5 ) ( x ) = 9 f ′ ′ ′ ( x ) + 7 x f ( 4 ) ( x ) ( 1-x^2)f^{(5)}(x)=9f'''(x)+7xf^{(4)}(x) ( 1 − x 2 ) f ( 5 ) ( x ) = 9 f ′′′ ( x ) + 7 x f ( 4 ) ( x ) Differentiate with respect to x x x
( 1 − x 2 ) f ( 6 ) ( x ) − 2 x f ( 5 ) ( x ) = 9 f ( 4 ) ( x ) + 7 f ( 4 ) ( x ) ( 1-x^2)f^{(6)}(x)-2xf^{(5)}(x)=9f^{(4)}(x)+7f^{(4)}(x) ( 1 − x 2 ) f ( 6 ) ( x ) − 2 x f ( 5 ) ( x ) = 9 f ( 4 ) ( x ) + 7 f ( 4 ) ( x )
+ 7 x f ( 5 ) ( x ) +7xf^{(5)}(x) + 7 x f ( 5 ) ( x )
( 1 − x 2 ) f ( 6 ) ( x ) = 16 f ( 4 ) ( x ) + 9 x f ( 5 ) ( x ) ( 1-x^2)f^{(6)}(x)=16f^{(4)}(x)+9xf^{(5)}(x) ( 1 − x 2 ) f ( 6 ) ( x ) = 16 f ( 4 ) ( x ) + 9 x f ( 5 ) ( x ) Let P ( n ) P(n) P ( n ) be the proposition that
( 1 − x 2 ) f ( n + 2 ) ( x ) = n 2 f ( n ) ( x ) + ( 2 n + 1 ) x f ( n + 1 ) ( x ) ( 1-x^2)f^{(n+2)}(x)=n^2f^{(n)}(x)+(2n+1)xf^{(n+1)}(x) ( 1 − x 2 ) f ( n + 2 ) ( x ) = n 2 f ( n ) ( x ) + ( 2 n + 1 ) x f ( n + 1 ) ( x )
n = 1 , 2 , . . . n=1,2,... n = 1 , 2 , ... Basic Step
P ( 1 ) P(1) P ( 1 ) is true because
( 1 − x 2 ) f ( 1 + 2 ) ( x ) = ( 1 ) 2 f ( 1 ) ( x ) + ( 2 ( 1 ) + 1 ) x f ( 1 + 1 ) ( x ) ( 1-x^2) f^{(1+2)}(x) =(1)^2f^{(1)}(x)+(2(1)+1)xf^{(1+1)}(x) ( 1 − x 2 ) f ( 1 + 2 ) ( x ) = ( 1 ) 2 f ( 1 ) ( x ) + ( 2 ( 1 ) + 1 ) x f ( 1 + 1 ) ( x ) Inductive Step
We assume that P ( k ) P(k) P ( k ) holds for an arbitrary positive integer k k k
That is, we assume that
( 1 − x 2 ) f ( k + 2 ) ( x ) = k 2 f ( k ) ( x ) + ( 2 k + 1 ) x f ( k + 1 ) ( x ) ( 1-x^2)f^{(k+2)}(x)=k^2f^{(k)}(x)+(2k+1)xf^{(k+1)}(x) ( 1 − x 2 ) f ( k + 2 ) ( x ) = k 2 f ( k ) ( x ) + ( 2 k + 1 ) x f ( k + 1 ) ( x ) Differentiate with respect to x x x
( 1 − x 2 ) f ( k + 2 + 1 ) ( x ) − 2 x f ( k + 2 ) ( x ) = k 2 f ( k + 1 ) ( x ) ( 1-x^2)f^{(k+2+1)}(x)-2xf^{(k+2)}(x)=k^2f^{(k+1)}(x) ( 1 − x 2 ) f ( k + 2 + 1 ) ( x ) − 2 x f ( k + 2 ) ( x ) = k 2 f ( k + 1 ) ( x )
+ ( 2 k + 1 ) f ( k + 1 ) ( x ) + ( 2 k + 1 ) x f ( k + 1 + 1 ) ( x ) +(2k+1)f^{(k+1)}(x)+(2k+1)xf^{(k+1+1)}(x) + ( 2 k + 1 ) f ( k + 1 ) ( x ) + ( 2 k + 1 ) x f ( k + 1 + 1 ) ( x ) Then
( 1 − x 2 ) f ( ( k + 1 ) + 2 ) ( x ) = ( k + 1 ) 2 f ( k + 1 ) ( x ) ( 1-x^2)f^{((k+1)+2)}(x)=(k+1)^2f^{(k+1)}(x) ( 1 − x 2 ) f (( k + 1 ) + 2 ) ( x ) = ( k + 1 ) 2 f ( k + 1 ) ( x )
+ ( 2 ( k + 1 ) + 1 ) x f ( ( k + 1 ) + 1 ) ( x ) +(2(k+1)+1)xf^{((k+1)+1)}(x) + ( 2 ( k + 1 ) + 1 ) x f (( k + 1 ) + 1 ) ( x ) This last equation shows that P ( k + 1 ) P(k + 1) P ( k + 1 ) is true under the assumption that P ( k ) P(k) P ( k ) is true. This completes the inductive step.
We have completed the basis step and the inductive step, so by mathematical induction we know that P ( n ) P(n) P ( n ) is true for all positive integers n . n. n . That is
( 1 − x 2 ) f ( n + 2 ) ( x ) = n 2 f ( n ) ( x ) + ( 2 n + 1 ) x f ( n + 1 ) ( x ) ( 1-x^2)f^{(n+2)}(x)=n^2f^{(n)}(x)+(2n+1)xf^{(n+1)}(x) ( 1 − x 2 ) f ( n + 2 ) ( x ) = n 2 f ( n ) ( x ) + ( 2 n + 1 ) x f ( n + 1 ) ( x )
n = 1 , 2 , . . . n=1,2,... n = 1 , 2 , ... Substitute x = 0 x=0 x = 0
f ( n + 2 ) ( 0 ) = n 2 f ( n ) ( 0 ) f^{(n+2)}(0)=n^2f^{(n)}(0) f ( n + 2 ) ( 0 ) = n 2 f ( n ) ( 0 )
Comments