Question #345861

The hypotenuse of a right triangle is constantly 8 inches long. One leg is increasing at the

rate of 3in./min. At what rate is the area of the triangle changing when the increasing leg is

4in.


1
Expert's answer
2022-05-31T11:06:17-0400


Given

x2+y2=82,x>0,y>0x^2+y^2=8^2, x>0, y>0

Then


x=64y2,0<y<8x=\sqrt{64-y^2}, 0<y<8

The area of the triangle is


A=12xyA=\dfrac{1}{2}xy

Substitute


A=A(t)=12y64y2A=A(t)=\dfrac{1}{2}y\sqrt{64-y^2}

Differentiate with respect to tt


dAdt=12(64y2+2y2264y2)dydt\dfrac{dA}{dt}=\dfrac{1}{2}(\sqrt{64-y^2}+\dfrac{-2y^2}{2\sqrt{64-y^2}})\dfrac{dy}{dt}

dAdt=(64y2y2264y2)dydt\dfrac{dA}{dt}=(\dfrac{64-y^2-y^2}{2\sqrt{64-y^2}})\dfrac{dy}{dt}

dAdt=(32y264y2)dydt\dfrac{dA}{dt}=(\dfrac{32-y^2}{\sqrt{64-y^2}})\dfrac{dy}{dt}

If dydt=3 in/min,y=4 in,\dfrac{dy}{dt}=3\ in/min, y=4\ in, then


dAdt=(32426442)(3)=43(in2/min)\dfrac{dA}{dt}=(\dfrac{32-4^2}{\sqrt{64-4^2}})(3)=4\sqrt{3}({in}^2/min)

The area of the triangle  is increasing at the rate of 434\sqrt{3} in2/min.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS