explain clearly.
∫(7𝑐𝑠𝑐2𝑥 + 2 sec 𝑥 tan 𝑥)𝑑𝑥
"=\\int(\\dfrac{7}{2\\sin x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"
"=\\int(\\dfrac{7\\sin x}{2\\sin^2 x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"
Use "u" -substitution
"\\int(\\dfrac{7\\sin x}{2\\sin^2 x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"
"=\\int(-\\dfrac{7}{2u(1-u^2)}-\\dfrac{2}{u^2})du"
"-\\dfrac{7}{2u(1-u^2)}=\\dfrac{A}{u}+\\dfrac{B}{1-u}+\\dfrac{C}{1+u}"
"=\\dfrac{A(1-u^2)+Bu(1+u)+Cu(1-u)}{u(1-u^2)}"
"u=-1:C=\\dfrac{7}{4}"
"u=1:B=-\\dfrac{7}{4}"
"\\int(-\\dfrac{7}{2u(1-u^2)})du"
"=-\\dfrac{7}{2}\\int\\dfrac{du}{u}-\\dfrac{7}{4}\\int\\dfrac{du}{1-u}+\\dfrac{7}{4}\\int\\dfrac{du}{1+u}"
"=-\\dfrac{7}{2}\\ln |u|+\\dfrac{7}{4}\\ln|1-u|+\\dfrac{7}{4}\\ln|1+u|+C_1"
"\\int(-\\dfrac{2}{u^2})du=\\dfrac{2}{u}+C_2"
Then
"=-\\dfrac{7}{2}\\ln |u|+\\dfrac{7}{4}\\ln|1-u|+\\dfrac{7}{4}\\ln|1+u|+\\dfrac{2}{u}+C"
So
"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{4}\\ln|1-\\cos x|+\\dfrac{7}{4}\\ln|1+\\cos x|"
"+\\dfrac{2}{\\cos x}+C"
"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{4}\\ln|1-\\cos^2 x|+\\dfrac{2}{\\cos x}+C"
"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{2}\\ln |\\sin x|+\\dfrac{2}{\\cos x}+C"
Comments
Leave a comment