Answer to Question #346253 in Calculus for rei

Question #346253

explain clearly.



∫(7𝑐𝑠𝑐2𝑥 + 2 sec 𝑥 tan 𝑥)𝑑𝑥

1
Expert's answer
2022-05-31T09:58:45-0400
"\\int(7\\csc2x+2 \\sec x \\tan x)dx"

"=\\int(\\dfrac{7}{2\\sin x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"

"=\\int(\\dfrac{7\\sin x}{2\\sin^2 x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"

Use "u" -substitution


"u=\\cos x, du=-\\sin x dx"

"\\int(\\dfrac{7\\sin x}{2\\sin^2 x\\cos x}+\\dfrac{2\\sin x}{\\cos^2x})dx"

"=\\int(-\\dfrac{7}{2u(1-u^2)}-\\dfrac{2}{u^2})du"

"-\\dfrac{7}{2u(1-u^2)}=\\dfrac{A}{u}+\\dfrac{B}{1-u}+\\dfrac{C}{1+u}"

"=\\dfrac{A(1-u^2)+Bu(1+u)+Cu(1-u)}{u(1-u^2)}"


"-\\dfrac{7}{2}=A(1-u^2)+Bu(1+u)+Cu(1-u)"


"u=0:A=-\\dfrac{7}{2}"

"u=-1:C=\\dfrac{7}{4}"

"u=1:B=-\\dfrac{7}{4}"

"\\int(-\\dfrac{7}{2u(1-u^2)})du"

"=-\\dfrac{7}{2}\\int\\dfrac{du}{u}-\\dfrac{7}{4}\\int\\dfrac{du}{1-u}+\\dfrac{7}{4}\\int\\dfrac{du}{1+u}"

"=-\\dfrac{7}{2}\\ln |u|+\\dfrac{7}{4}\\ln|1-u|+\\dfrac{7}{4}\\ln|1+u|+C_1"

"\\int(-\\dfrac{2}{u^2})du=\\dfrac{2}{u}+C_2"

Then


"\\int(-\\dfrac{7}{2u(1-u^2)}-\\dfrac{2}{u^2})du"

"=-\\dfrac{7}{2}\\ln |u|+\\dfrac{7}{4}\\ln|1-u|+\\dfrac{7}{4}\\ln|1+u|+\\dfrac{2}{u}+C"

So


"\\int(7\\csc2x+2 \\sec x \\tan x)dx"

"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{4}\\ln|1-\\cos x|+\\dfrac{7}{4}\\ln|1+\\cos x|"

"+\\dfrac{2}{\\cos x}+C"

"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{4}\\ln|1-\\cos^2 x|+\\dfrac{2}{\\cos x}+C"

"=-\\dfrac{7}{2}\\ln |\\cos x|+\\dfrac{7}{2}\\ln |\\sin x|+\\dfrac{2}{\\cos x}+C"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS