Answer to Question #334915 in Calculus for Quân Jason

Question #334915

There is a line through the origin that divides the region bounded by the parabola 

y = 6x - 7x2 and the x-axis into two regions with equal area. What is the slope of that line?


1
Expert's answer
2022-04-29T10:18:46-0400
6x7x2=06x-7x^2=0

x1=0,x2=67x_1=0, x_2=\dfrac{6}{7}

Areatotal=06/7(6x7x2)dxArea_{total}=\displaystyle\int_{0}^{6/7}(6x-7x^2)dx

=[3x273x3]6/70=3649(units2)=[3x^2-\dfrac{7}{3}x^3]\begin{matrix} 6/7 \\ 0 \end{matrix}=\dfrac{36}{49}({units}^2)

A1=A2=1849units2A_1=A_2=\dfrac{18}{49}{units}^2

Let m=m= the slope of a line: y=mxy=mx


6x7x2=mx6x-7x^2=mx

x1=0,x2=6m7x_1=0, x_2=\dfrac{6-m}{7}

Area1=0(6m)/7(6x7x2mx)dxArea_1=\displaystyle\int_{0}^{(6-m)/7}(6x-7x^2-mx)dx

=[3x273x3m2x2](6m)/70=[3x^2-\dfrac{7}{3}x^3-\dfrac{m}{2}x^2]\begin{matrix} (6-m)/7 \\ 0 \end{matrix}

=3(6m)249(6m)33(49)m(6m)22(49)=1849=\dfrac{3(6-m)^2}{49}-\dfrac{(6-m)^3}{3(49)}-\dfrac{m(6-m)^2}{2(49)}=\dfrac{18}{49}

(6m)2(1812+2m3m)=108(6-m)^2(18-12+2m-3m)=108

6m=10836-m=\sqrt[3]{108}

m=6343m=6-3\sqrt[3]{4}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment