There is a line through the origin that divides the region bounded by the parabola
y = 6x - 7x2 and the x-axis into two regions with equal area. What is the slope of that line?
"x_1=0, x_2=\\dfrac{6}{7}"
"Area_{total}=\\displaystyle\\int_{0}^{6\/7}(6x-7x^2)dx"
"=[3x^2-\\dfrac{7}{3}x^3]\\begin{matrix}\n 6\/7 \\\\\n 0\n\\end{matrix}=\\dfrac{36}{49}({units}^2)"
"A_1=A_2=\\dfrac{18}{49}{units}^2"
Let "m=" the slope of a line: "y=mx"
"x_1=0, x_2=\\dfrac{6-m}{7}"
"Area_1=\\displaystyle\\int_{0}^{(6-m)\/7}(6x-7x^2-mx)dx"
"=[3x^2-\\dfrac{7}{3}x^3-\\dfrac{m}{2}x^2]\\begin{matrix}\n (6-m)\/7 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{3(6-m)^2}{49}-\\dfrac{(6-m)^3}{3(49)}-\\dfrac{m(6-m)^2}{2(49)}=\\dfrac{18}{49}"
"(6-m)^2(18-12+2m-3m)=108"
"6-m=\\sqrt[3]{108}"
"m=6-3\\sqrt[3]{4}"
Comments
Leave a comment