f(x,y)= -(x2-1)2-(x2y-x-1)2
Find the critical points of f (x, y) and Using the Second Partials Test (SPT), find the relative extrema’s of f (x ,y)
Find the critical point(s)
"f_y=-2x^2(x^2y-x-1)"
"\\begin{cases}\n f_x=0 \\\\\n f_y=0\n\\end{cases}"
If "x=0," then
If "x^2y-x-1=0," then
Since "x\\not=0," we take "x_1=-1, x_2=1."
"x=-1"
Point "(-1, 0)."
"x=1"
"(1)^2y-1-1=0=>y=2"Point "(1, 2)."
"f_{xx}=-12x^2+2-12x^2y^2+12xy+4y""f_{xy}=f_{yx}=-8x^3y+6x^2+4x"
"f_{yy}=-2x^4"
Point "(-1, 0)"
"f_{xx}(-1,0)=-10<0"
There is a relative maximum at "(-1, 0)."
Point "(1, 2)"
"f_{xx}(1,2)=-26<0""D=\\begin{vmatrix}\n -26 & -6 \\\\\n -6 & -2\n\\end{vmatrix}=16>0"There is a relative maximum at "(1, 2)."
Comments
Leave a comment