Answer to Question #334057 in Calculus for Leena

Question #334057

For what values of 𝑐 does the curve 𝑓(π‘₯) = 2π‘₯3 + 𝑐π‘₯2 + 2π‘₯ have maximum and minimum






points?

1
Expert's answer
2022-04-27T14:46:01-0400
fβ€²(x)=6x2+2cx+2f'(x)=6x^2+2cx+2

Find the critical number(s)


fβ€²(x)=0=>6x2+2cx+2=0f'(x)=0=>6x^2+2cx+2=0

3x2+cx+1=03x^2+cx+1=0x=βˆ’cΒ±c2βˆ’126x=\dfrac{-c\pm\sqrt{c^2-12}}{6}

We consider x∈Rx\in \R

c2βˆ’12β‰₯0=>cβ‰€βˆ’12 or cβ‰₯12c^2-12\ge0=>c\le-\sqrt{12}\ or\ c\ge\sqrt{12}

The curve 𝑓(π‘₯)=2π‘₯3+𝑐π‘₯2+2π‘₯𝑓(π‘₯) = 2π‘₯^3 + 𝑐π‘₯^2 + 2π‘₯ have maximum and minimum for c∈(βˆ’βˆž,βˆ’12)βˆͺ(12,∞).c\in(-\infin, -\sqrt{12})\cup (\sqrt{12}, \infin).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment