fβ²(x)=6x2+2cx+2 Find the critical number(s)
fβ²(x)=0=>6x2+2cx+2=0
3x2+cx+1=0x=6βcΒ±c2β12ββ We consider xβR
c2β12β₯0=>cβ€β12β or cβ₯12βThe curve f(x)=2x3+cx2+2x have maximum and minimum for cβ(ββ,β12β)βͺ(12β,β).
Comments
Leave a comment