Answer to Question #334163 in Calculus for kristine

Question #334163

find the derivative using chain rule.



1. y= (x³ + 3)⁵



2. y=(-3x⁵ + 1)³



3. y=(-5x³ - 3)³



4. y=(5x² + 3)⁴



5. f(x)=⁴√-3x⁴-2



6. f(x)= √-2x² + 1




1
Expert's answer
2022-04-27T11:29:17-0400

1.y=(x3+3)5y=5(x3+3)4(x3+3)=15x2(x3+3)41. y=(x^3+3)^5\\ y'=5(x^3+3)^4(x^3+3)' = 15x^2(x^3+3)^4

2.y=(3x5+1)3y=3(3x5+1)2(3x5+1)=45x4(3x5+1)22. y =(-3x^5+1)^3\\ y'=3(-3x^5+1)^2(-3x^5+1)' = -45x^4(-3x^5+1)^2

3.y=(5x33)3y=3(5x33)2(5x33)=45x2(5x33)23. y =(-5x^3-3)^3\\ y'=3(-5x^3-3)^2(-5x^3-3)'= -45x^2(-5x^3-3)^2

4.y=(5x2+3)4y=4(5x2+3)3(5x2+3)=40x(5x2+3)34. y=(5x^2+3)^4\\ y'=4(5x^2+3)^3(5x^2+3)' = 40x(5x^2+3)^3

5.f(x)=3x424f(x)=(3x42)4(3x42)34=3x3(3x42)345. f(x) = \sqrt[4]{-3x^4-2}\\ f'(x)=\cfrac{(-3x^4-2)'}{4\sqrt[4]{(-3x^4-2)^3}}=\cfrac{-3x^3}{\sqrt[4]{(-3x^4-2)^3}}

6.f(x)=2x2+1f(x)=(2x2+1)22x2+1=2x2x2+16. f(x) = \sqrt{-2x^2+1}\\ f'(x) = \cfrac{(-2x^2+1)'}{2\sqrt{-2x^2+1}} = \cfrac{-2x}{\sqrt{-2x^2+1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment