1. Since the number of products sold is x = 250 , x=250, x = 250 , the coresponding price is
P = 2000 − 0.2 ( 250 ) − 0.01 ( 250 ) 2 = 1325 P=2000-0.2(250)-0.01(250)^2=1325 P = 2000 − 0.2 ( 250 ) − 0.01 ( 250 ) 2 = 1325 The consumer surplus is as follows
∫ 0 250 ( p ( x ) − P ) d x \displaystyle\int_{0}^{250}(p(x)-P)dx ∫ 0 250 ( p ( x ) − P ) d x
= ∫ 0 250 ( 2000 − 0.2 x − 0.01 x 2 − 1325 ) d x =\displaystyle\int_{0}^{250}(2000-0.2x-0.01x^2-1325)dx = ∫ 0 250 ( 2000 − 0.2 x − 0.01 x 2 − 1325 ) d x
= [ 675 x − 0.1 x 2 − 0.01 x 3 3 ] 250 0 =[675x-0.1x^2-\dfrac{0.01x^3}{3}]\begin{matrix}
250 \\
0
\end{matrix} = [ 675 x − 0.1 x 2 − 3 0.01 x 3 ] 250 0
= 675 ( 250 ) − 0.1 ( 250 ) 2 − 0.01 ( 250 ) 3 3 =675(250)-0.1(250)^2-\dfrac{0.01(250)^3}{3} = 675 ( 250 ) − 0.1 ( 250 ) 2 − 3 0.01 ( 250 ) 3
= $ 110416.67 =\$110416.67 = $110416.67 2.1
The cardioid intersects with the circle
3 sin θ = 1 + sin θ 3\sin\theta=1+\sin \theta 3 sin θ = 1 + sin θ
sin θ = 1 2 \sin \theta=\dfrac{1}{2} sin θ = 2 1 The cardioid intersects with the circle at ( 3 2 , π 6 ) , ( 3 2 , 5 π 6 ) (\dfrac{3}{2},\dfrac{\pi}{6}),(\dfrac{3}{2},\dfrac{5\pi}{6}) ( 2 3 , 6 π ) , ( 2 3 , 6 5 π ) and the pole.
The area of interest has been shaded above.
To find the area of a polar curve, we use
A = 1 2 ∫ π / 6 5 π / 6 ( ( 3 sin θ ) 2 − ( 1 + sin θ ) 2 ) d θ A=\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}((3\sin \theta)^2-(1+\sin \theta)^2)d\theta A = 2 1 ∫ π /6 5 π /6 (( 3 sin θ ) 2 − ( 1 + sin θ ) 2 ) d θ
= 1 2 ∫ π / 6 5 π / 6 ( 8 sin 2 θ − 2 sin θ − 1 ) d θ =\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}(8\sin^2 \theta-2\sin\theta-1)d\theta = 2 1 ∫ π /6 5 π /6 ( 8 sin 2 θ − 2 sin θ − 1 ) d θ
= 1 2 ∫ π / 6 5 π / 6 ( 3 − 4 cos 2 θ − 2 sin θ ) d θ =\dfrac{1}{2}\displaystyle\int_{\pi/6}^{5\pi/6}(3-4\cos2 \theta-2\sin\theta)d\theta = 2 1 ∫ π /6 5 π /6 ( 3 − 4 cos 2 θ − 2 sin θ ) d θ
= 1 2 [ 3 θ − 2 sin 2 θ + 2 cos θ ] 5 π / 6 π / 6 =\dfrac{1}{2}[3\theta-2\sin2\theta+2\cos \theta]\begin{matrix}
5\pi/6\\
\pi/6
\end{matrix} = 2 1 [ 3 θ − 2 sin 2 θ + 2 cos θ ] 5 π /6 π /6
= 1 2 ( 5 π 2 + 3 − 3 − π 2 + 3 − 3 ) =\dfrac{1}{2}(\dfrac{5\pi}{2}+\sqrt{3}-\sqrt{3}-\dfrac{\pi}{2}+\sqrt{3}-\sqrt{3}) = 2 1 ( 2 5 π + 3 − 3 − 2 π + 3 − 3 )
= π =\pi = π π \pi π square units.
2. 2
r ( x ) = 1 + sin x , r ′ ( x ) = cos x r(x)=1+\sin x, r'(x)=\cos x r ( x ) = 1 + sin x , r ′ ( x ) = cos x
( r ) 2 + ( r ′ ) 2 = ( 1 + sin x ) 2 + ( cos x ) 2 (r)^2+(r')^2=(1+\sin x)^2+(\cos x)^2 ( r ) 2 + ( r ′ ) 2 = ( 1 + sin x ) 2 + ( cos x ) 2
= 2 + 2 sin x =2+2\sin x = 2 + 2 sin x
L = ∫ − π / 2 3 π / 2 ( r ( x ) ) 2 + ( r ′ ( x ) ) 2 d x L=\displaystyle\int_{-\pi/2}^{3\pi/2}\sqrt{(r(x))^2+(r'(x))^2}dx L = ∫ − π /2 3 π /2 ( r ( x ) ) 2 + ( r ′ ( x ) ) 2 d x
= ∫ − π / 2 3 π / 2 2 + 2 sin x d x =\displaystyle\int_{-\pi/2}^{3\pi/2}\sqrt{2+2\sin x}dx = ∫ − π /2 3 π /2 2 + 2 sin x d x
= 2 ∫ − π / 2 3 π / 2 ∣ cos ( x 2 − π 4 ) ∣ d x =2\displaystyle\int_{-\pi/2}^{3\pi/2}|\cos(\dfrac{x}{2}-\dfrac{\pi}{4})|dx = 2 ∫ − π /2 3 π /2 ∣ cos ( 2 x − 4 π ) ∣ d x
= 4 [ sin ( x 2 − π 4 ) ] 3 π / 2 − π / 2 = 4 ( 1 + 1 ) = 8 ( u n i t s ) =4\bigg[\sin(\dfrac{x}{2}-\dfrac{\pi}{4})\bigg]\begin{matrix}
3\pi/2 \\
-\pi/2
\end{matrix}=4(1+1)=8(units) = 4 [ sin ( 2 x − 4 π ) ] 3 π /2 − π /2 = 4 ( 1 + 1 ) = 8 ( u ni t s ) 8 units
Comments