1. The demand for a product, in dollars, is P = 2000 - 0.2x - 0.01x2
Find the consumer surplus when the sales level is 250.
2.1. Find the area of the region that lies inside the circle r = 3sin(x)and
outside the cardioid r = 1+ sin(x).
2.2 Find the length of the cardioid r = 1+ sin(x)
1. Since the number of products sold is "x=250," the coresponding price is
The consumer surplus is as follows
"=\\displaystyle\\int_{0}^{250}(2000-0.2x-0.01x^2-1325)dx"
"=[675x-0.1x^2-\\dfrac{0.01x^3}{3}]\\begin{matrix}\n 250 \\\\\n 0\n\\end{matrix}"
"=675(250)-0.1(250)^2-\\dfrac{0.01(250)^3}{3}"
"=\\$110416.67"
2.1
The cardioid intersects with the circle
"\\sin \\theta=\\dfrac{1}{2}"
The cardioid intersects with the circle at "(\\dfrac{3}{2},\\dfrac{\\pi}{6}),(\\dfrac{3}{2},\\dfrac{5\\pi}{6})" and the pole.
The area of interest has been shaded above.
To find the area of a polar curve, we use
"=\\dfrac{1}{2}\\displaystyle\\int_{\\pi\/6}^{5\\pi\/6}(8\\sin^2 \\theta-2\\sin\\theta-1)d\\theta"
"=\\dfrac{1}{2}\\displaystyle\\int_{\\pi\/6}^{5\\pi\/6}(3-4\\cos2 \\theta-2\\sin\\theta)d\\theta"
"=\\dfrac{1}{2}[3\\theta-2\\sin2\\theta+2\\cos \\theta]\\begin{matrix}\n 5\\pi\/6\\\\\n \\pi\/6\n\\end{matrix}"
"=\\dfrac{1}{2}(\\dfrac{5\\pi}{2}+\\sqrt{3}-\\sqrt{3}-\\dfrac{\\pi}{2}+\\sqrt{3}-\\sqrt{3})"
"=\\pi"
"\\pi" square units.
2. 2
"r(x)=1+\\sin x, r'(x)=\\cos x""(r)^2+(r')^2=(1+\\sin x)^2+(\\cos x)^2"
"=2+2\\sin x"
"L=\\displaystyle\\int_{-\\pi\/2}^{3\\pi\/2}\\sqrt{(r(x))^2+(r'(x))^2}dx"
"=\\displaystyle\\int_{-\\pi\/2}^{3\\pi\/2}\\sqrt{2+2\\sin x}dx"
"=2\\displaystyle\\int_{-\\pi\/2}^{3\\pi\/2}|\\cos(\\dfrac{x}{2}-\\dfrac{\\pi}{4})|dx"
"=4\\bigg[\\sin(\\dfrac{x}{2}-\\dfrac{\\pi}{4})\\bigg]\\begin{matrix}\n 3\\pi\/2 \\\\\n -\\pi\/2\n\\end{matrix}=4(1+1)=8(units)"
8 units
Comments
Leave a comment