1.Find the Maclaurin series for thefunction f(x)= (x^2+ 2-x)5/2and its radiusofconvergence
Remind that Maclaurin series is the Taylor series considered at point "x=0". The Maclaurin series has the form: "f(0)+f'(0)x+f''(0)\\frac{x^2}{2!}+f'''(0)\\frac{x^3}{3!}+...". Consider the function "g=(2-z)^{\\frac{5}2}=2^{\\frac52}(1-\\frac{z}2)^{\\frac52}". Maclaurin series for the function "(1-x)^{\\alpha}" has the form: "(1-x)^{\\alpha}=\\sum_{n=0}^{+\\infty}C_{\\alpha}^n(-1)^nx^{n}," where "C_{\\alpha}^n=\\frac{\\alpha(\\alpha-1)...(\\alpha-n+1)}{n!}". It is a known series and it converges for "|x|<1". We get: "g=(2-z)^{\\frac{5}2}=2^{\\frac52}(1-\\frac{z}2)^{\\frac52}=\\sum_{n=0}^{+\\infty}C_{\\alpha}^n(-1)^n\\left(\\frac12\\right)^nz^{n}". Its radius of convergence is: "|z|<2". Now we set "z=x-x^2". We receive: "\\sum_{n=0}^{+\\infty}C_{\\alpha}^n(-1)^n\\left(\\frac12\\right)^n(x-x^2)^{n}".
It remains to expand it using the binomial formula "(x-x^2)^n=\\sum_{k=0}^nC_n^kx^{k}(-1)^{n-k}x^{2n-2k}",where "C_n^k=\\frac{n!}{k!(n-k)!}". We get: "\\sum_{n=0}^{+\\infty}C_{\\alpha}^n(-1)^n\\left(\\frac12\\right)^n\\sum_{k=0}^nC_n^k(-1)^{n-k}x^{2n-k}". The series converges for "|x^2-x|<2". It is enough to solve the latter inequality to obtain the radius of convergence. Consider the expression: "x(x-1)". It is positive for "x\\in(-\\infty,0)\\cup(1,+\\infty)". For "x\\in(-\\infty,0)\\cup(1,+\\infty)" we receive: "x^2-x-2<0". The latter is equivalent to: "(x+1)(x-2)<0". The solution is "(-1,0)\\cup(1,2)". For "x\\in[0,1]" we get: "x^2-x+2>0". The latter is satisfied for "x\\in[0,1]." Thus, the Maclaurin series has the form: "\\sum_{n=0}^{+\\infty}\\sum_{k=0}^nC_{\\alpha}^nC_n^k(-1)^{2n-k}\\left(\\frac12\\right)^nx^{2n-k}" and it converges for "x\\in(-1,2)".
Answer: the Maclaurin series is: "\\sum_{n=0}^{+\\infty}\\sum_{k=0}^nC_{\\alpha}^nC_n^k(-1)^{2n-k}\\left(\\frac12\\right)^nx^{2n-k}". It converges for "x\\in(-1,2)."
Comments
Leave a comment