Question #334848

Find the center of mass for each of the following regions.

1. The region bounded by y = x^3 ,x = -2 and the x-axis.


1
Expert's answer
2022-04-29T09:23:55-0400
A=20x3dx=[x44]02=4A=-\displaystyle\int_{-2}^{0}x^3dx=-[\dfrac{x^4}{4}]\begin{matrix} 0 \\ -2 \end{matrix}=4

xˉ=14(20x(x3)dx)=14[x55]02=85\bar{x}=\dfrac{1}{4}(-\displaystyle\int_{-2}^{0}x(x^3)dx)=-\dfrac{1}{4}[\dfrac{x^5}{5}]\begin{matrix} 0 \\ -2 \end{matrix}=-\dfrac{8}{5}

yˉ=14(1220(x3)2dx)=18[x77]02=167\bar{y}=\dfrac{1}{4}(-\dfrac{1}{2}\displaystyle\int_{-2}^{0}(x^3)^2dx)=-\dfrac{1}{8}[\dfrac{x^7}{7}]\begin{matrix} 0 \\ -2 \end{matrix}=-\dfrac{16}{7}

The centroid is (85,167).(-\dfrac{8}{5}, -\dfrac{16}{7}).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS