Question #304169

Write down T3(x), T4(x), and T5(x) for the Taylor series of f(x) = ln (3 + 4x) about x = 0.

Graph all three of the Taylor polynomials and f(x) on the same graph for the interval [−1/2,2]using programming tool.


1
Expert's answer
2022-03-07T06:01:01-0500

ln(1+x)=Σn=1(1)n1xnnln(3+4x)=ln(3)+ln(1+(43x))=ln(3)+Σn=1(1)n1(43x)nn==ln(3)+43x12(43)2x2+13(43)3x314(43)4x4+15(43)5x5+O(x6)T3(x)=ln(3)+43x89x2+6481x3T4(x)=ln(3)+43x89x2+6481x36481x4T5(x)=ln(3)+43x89x2+6481x36481x4+10241215x5\ln(1+x)=\Sigma_{n=1}^{\infin}(-1)^{n-1}\frac{x^n}{n}\\ \ln(3+4x)=ln(3)+ln(1+(\frac{4}{3}x))=ln(3)+\Sigma_{n=1}^{\infin}(-1)^{n-1}\frac{(\frac{4}{3}x)^n}{n}=\\ =ln(3)+\frac{4}{3}x-\frac{1}{2}(\frac{4}{3})^2x^2+\frac{1}{3}(\frac{4}{3})^3x^3-\frac{1}{4}(\frac{4}{3})^4x^4+\frac{1}{5}(\frac{4}{3})^5x^5+O(x^6)\\ T_3(x)=ln(3)+\frac{4}{3}x-\frac{8}{9}x^2+\frac{64}{81}x^3\\ T_4(x)=ln(3)+\frac{4}{3}x-\frac{8}{9}x^2+\frac{64}{81}x^3-\frac{64}{81}x^4\\ T_5(x)=ln(3)+\frac{4}{3}x-\frac{8}{9}x^2+\frac{64}{81}x^3-\frac{64}{81}x^4+\frac{1024}{1215}x^5\\

convergence interval(34,34](-\frac{3}{4},\frac{3}{4}]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS