The function J1 defined by
J1(x) = ∑((((−1)^n).x^(2n+1))/(n! (n + 1)! 2)).2n+1
n=0
,
is called the Bessel function of order 1.
a) Find its domain.
b) Graph the first several partial sums on a common screen using programming software.
a) the domain of the function is the interval of convergence of power series. Let "a_n=\\frac{(-1)^{n}x^{2n+1}}{n!(n+1)!2^{2n+1}}" and find the "lim_{n\\to\\infin}|\\frac{a_{n+1}}{a_n}|"
"|\\frac{\\frac{(-1)^{n+1}x^{2(n+1)+1}}{(n+1)!((n+1)+1)!2^{2(n+1)+1}}}{\\frac{(-1)^{n}x^{2n+1}}{n!(n+1)!2^{2n+1}}}|=|\\frac{x^{2n+3}}{(n+1)!(n+2)!2^{2n+3}}\\times\\frac{n!(n+1)!2^{2n+1}}{x^{2n+1}}|"
"=|\\frac{x^2}{(n+1)n!(n+1)(n+2)!2^2}\\times n!(n+1)!|"
"=|\\frac{x^2}{4(n+1)(n+2)}|"
"\\to0\\ as\\ n\\ \\to\\infin"
By ratio test, Since "lim_{n\\to\\infin|\\frac{a_{n+1}}{a_{n}}|}=0\\le1\\ \\forall\\ x" , The given series converges ,With this ,write write the interval which is exactly the domain of the function
"(-\\infin,\\infin)"
b)
Comments
Leave a comment