We are asked for the extreme values of f f f subject to the constraint g ( x , y , z ) = x 2 + y 2 = 1. g(x,y,z)=x^2+y^2=1. g ( x , y , z ) = x 2 + y 2 = 1.
Using Lagrange multipliers, we solve the equations ∇ f ( x , y ) = λ ∇ g ( x , y ) \nabla f(x,y)=\lambda\nabla g(x, y) ∇ f ( x , y ) = λ ∇ g ( x , y ) and g ( x , y ) = 1 , g(x,y)=1, g ( x , y ) = 1 ,
which can be written as
f x = λ g x , f y = λ g y , x 2 + y 2 = 1 f_x=\lambda g_x, f_y=\lambda g_y, x^2+y^2=1 f x = λ g x , f y = λ g y , x 2 + y 2 = 1
16 x = λ ( 2 x ) , − 2 = λ ( 2 y ) , x 2 + y 2 = 1 16x=\lambda(2x), -2=\lambda(2y), x^2+y^2=1 16 x = λ ( 2 x ) , − 2 = λ ( 2 y ) , x 2 + y 2 = 1 We have x = 0 x=0 x = 0 or λ = 8. \lambda=8. λ = 8.
If x = 0 , x=0, x = 0 , then y = − 1 y=-1 y = − 1 or y = 1. y=1. y = 1.
If λ = 8 , \lambda=8, λ = 8 , then y = − 1 / 8 y=-1/8 y = − 1/8 and x = ± 3 7 8 x=\pm\dfrac{3\sqrt{7}}{8} x = ± 8 3 7
f ( 0 , − 1 ) = 8 ( 0 ) 2 − 2 ( − 1 ) = 2 f(0, -1)=8(0)^2-2(-1)=2 f ( 0 , − 1 ) = 8 ( 0 ) 2 − 2 ( − 1 ) = 2
f ( 0 , 1 ) = 8 ( 0 ) 2 − 2 ( 1 ) = − 2 f(0, 1)=8(0)^2-2(1)=-2 f ( 0 , 1 ) = 8 ( 0 ) 2 − 2 ( 1 ) = − 2
f ( − 3 7 8 , − 1 8 ) = 8 ( − 3 7 8 ) 2 − 2 ( − 1 8 ) = 65 8 f(-\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=8(\dfrac{-3\sqrt{7}}{8})^2-2(-\dfrac{1}{8})=\dfrac{65}{8} f ( − 8 3 7 , − 8 1 ) = 8 ( 8 − 3 7 ) 2 − 2 ( − 8 1 ) = 8 65
f ( 3 7 8 , − 1 8 ) = 8 ( 3 7 8 ) 2 − 2 ( − 1 8 ) = 65 8 f(\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=8(\dfrac{3\sqrt{7}}{8})^2-2(-\dfrac{1}{8})=\dfrac{65}{8} f ( 8 3 7 , − 8 1 ) = 8 ( 8 3 7 ) 2 − 2 ( − 8 1 ) = 8 65 Therefore the maximum value of on the circle x 2 + y 2 = 1 x^2+y^2=1 x 2 + y 2 = 1 is f ( ± 3 7 8 , − 1 8 ) = 65 8 , f(\pm\dfrac{3\sqrt{7}}{8}, -\dfrac{1}{8})=\dfrac{65}{8} , f ( ± 8 3 7 , − 8 1 ) = 8 65 , and the
minimum value is f ( 0 , 1 ) = − 2. f(0, 1)=-2. f ( 0 , 1 ) = − 2.
Comments