a)by definition we know that
t a n h ( 2 π d L ) = e ( 2 π d L ) − e − ( 2 π d L ) e 2 π d L + e 2 π d L tanh(\frac{2\pi d}{L})=\frac{e^{(\frac{2\pi d}{L})}-e^{-(\frac{2\pi d}{L})}}{e^{\frac{2\pi d}{L}}+e^{\frac{2\pi d}{L}}} t anh ( L 2 π d ) = e L 2 π d + e L 2 π d e ( L 2 π d ) − e − ( L 2 π d )
l i m d → ∞ t a n h ( 2 π d L ) = l i m d → ∞ e ( 2 π d L ) − e − ( 2 π d L ) e 2 π d L + e 2 π d L {lim}_{\ d \to\infin}\ \ tanh(\frac{2\pi d}{L})=lim_{\ d \to\infin}\ \frac{e^{(\frac{2\pi d}{L})}-e^{-(\frac{2\pi d}{L})}}{e^{\frac{2\pi d}{L}}+e^{\frac{2\pi d}{L}}} l im d → ∞ t anh ( L 2 π d ) = l i m d → ∞ e L 2 π d + e L 2 π d e ( L 2 π d ) − e − ( L 2 π d )
since we have a situation of ∞ ∞ \frac{\infin}{\infin} ∞ ∞ we use L 'hopital's rule, which yield;
l i m d → ∞ 4 π e 4 π d 4 π e 4 π d lim_{d\to\infin} \frac{4\pi e^{4\pi d}}{4\pi e^{4\pi d}} l i m d → ∞ 4 π e 4 π d 4 π e 4 π d but this is just l i m d → ∞ 1 = 1 lim_{d\to\infin}\ 1=1 l i m d → ∞ 1 = 1
thus, we have shown that l i m d → ∞ t a n h ( 2 π d L ) = 1 lim_{d\to\infin}\ tanh(\frac{2\pi d}{L})=1 l i m d → ∞ t anh ( L 2 π d ) = 1
now we have that , v = ( g L 2 π ) . t a n h ( 2 π d L ) = ( g L 2 π ) . 1 v=\sqrt{(\frac{gL}{2\pi}).tanh(\frac{2\pi d}{L})}=\sqrt{(\frac{gL}{2\pi}).1} v = ( 2 π gL ) . t anh ( L 2 π d ) = ( 2 π gL ) .1
therefore, v ≈ ( g L 2 π ) . v\approx \sqrt{(\frac{gL}{2\pi}).} v ≈ ( 2 π gL ) .
b)Find the maclaurin series for tanh x
f ( x ) = t a n h x f ( 0 ) = 0 f(x)=tanh x\ \ \ \ \ f(0)=0 f ( x ) = t anh x f ( 0 ) = 0
f ′ ( x ) = s e c h 2 x f ′ ( 0 ) = 1 f'(x)=sech^{2}x\ \ \ \ \ \ f'(0)=1 f ′ ( x ) = sec h 2 x f ′ ( 0 ) = 1
f ′ ′ ( x ) = − 2 t a n h x s e c h 2 x f ′ ′ ( 0 ) = 0 f''(x)=-2tanhx\ sech^{2}x\ \ \ \ f''(0)=0 f ′′ ( x ) = − 2 t anh x sec h 2 x f ′′ ( 0 ) = 0
f ′ ′ ′ ( x ) = ( c o s h 2 x − 2 ) s e c h 4 x f ′ ′ ′ ( 0 ) = − 2 f'''(x)=(cosh\ 2x-2)sech^{4}x\ \ \ f'''(0)=-2 f ′′′ ( x ) = ( cos h 2 x − 2 ) sec h 4 x f ′′′ ( 0 ) = − 2
f 4 ( x ) = − 2 ( s i n ( 3 x ) − 11 s i n h x ) f^{4}(x)=-2(sin(3x)-11sinh\ x) f 4 ( x ) = − 2 ( s in ( 3 x ) − 11 s inh x )
t a n h x ≈ 0 + x + 0 2 ! x 2 − 2 3 ! + 0 tanh\ x \approx0+x+\frac{0}{2!}x^{2}-\frac{2}{3!}+0 t anh x ≈ 0 + x + 2 ! 0 x 2 − 3 ! 2 + 0
≈ x − 1 3 x 2 \approx x-\frac{1}{3}x^{2} ≈ x − 3 1 x 2
letting x = 2 π d L x=\frac{2\pi d}{L} x = L 2 π d
t a n h 2 π d L ≈ 2 π d L − 1 3 ( 2 π d L ) tanh \frac{2\pi d}{L}\approx \frac{2\pi d}{L}-\frac{1}{3}(\frac{2\pi d}{L}) t anh L 2 π d ≈ L 2 π d − 3 1 ( L 2 π d )
now put it into the equation
v 2 = g L 2 π t a n h 2 π d L v^{2}=\frac{gL}{2\pi}tanh\frac{2\pi d}{L} v 2 = 2 π gL t anh L 2 π d
≈ g L 2 π ( 2 π L − 1 3 ( 2 π d L ) 3 ) \approx\frac{gL}{2\pi}(\frac{2\pi}{L}-\frac{1}{3}(\frac{2\pi d}{L})^{3}) ≈ 2 π gL ( L 2 π − 3 1 ( L 2 π d ) 3 )
≈ g ( d − 1 3 ( 2 π d L ) 2 ) \approx g(d-\frac{1}{3}(\frac{2\pi d}{L})^{2}) ≈ g ( d − 3 1 ( L 2 π d ) 2 )
in shallow water d and it simplifies to:
v 2 ≈ g ( d − 0 ) v^2\approx g(d-0) v 2 ≈ g ( d − 0 )
≈ g d \approx gd ≈ g d
v ≈ g d v\approx \sqrt{gd} v ≈ g d
Comments