Question #303755

If a water wave with length L moves with a velocity 𝑣 across a body of water with depth d, as in figure below,

then

𝑣2 = 𝑔𝐿 tanh 2𝜋𝑑, 2𝜋 𝐿

a) If the water is deep, show that 𝑣 ≈ √𝑔𝐿. 2𝜋

b) If the water is shallow, use the Maclaurin series for tanh to show that 𝑣 ≈ √𝑔𝑑. (Thus, in shallow water the velocity of a wave tends to be independent of the length of the wave.)


1
Expert's answer
2022-02-28T18:09:02-0500

a)by definition we know that

tanh(2πdL)=e(2πdL)e(2πdL)e2πdL+e2πdLtanh(\frac{2\pi d}{L})=\frac{e^{(\frac{2\pi d}{L})}-e^{-(\frac{2\pi d}{L})}}{e^{\frac{2\pi d}{L}}+e^{\frac{2\pi d}{L}}}

lim d  tanh(2πdL)=lim d e(2πdL)e(2πdL)e2πdL+e2πdL{lim}_{\ d \to\infin}\ \ tanh(\frac{2\pi d}{L})=lim_{\ d \to\infin}\ \frac{e^{(\frac{2\pi d}{L})}-e^{-(\frac{2\pi d}{L})}}{e^{\frac{2\pi d}{L}}+e^{\frac{2\pi d}{L}}}

since we have a situation of \frac{\infin}{\infin} we use L 'hopital's rule, which yield;

limd4πe4πd4πe4πdlim_{d\to\infin} \frac{4\pi e^{4\pi d}}{4\pi e^{4\pi d}} but this is just limd 1=1lim_{d\to\infin}\ 1=1

thus, we have shown that limd tanh(2πdL)=1lim_{d\to\infin}\ tanh(\frac{2\pi d}{L})=1

now we have that , v=(gL2π).tanh(2πdL)=(gL2π).1v=\sqrt{(\frac{gL}{2\pi}).tanh(\frac{2\pi d}{L})}=\sqrt{(\frac{gL}{2\pi}).1}

therefore, v(gL2π).v\approx \sqrt{(\frac{gL}{2\pi}).}


b)Find the maclaurin series for tanh x

f(x)=tanhx     f(0)=0f(x)=tanh x\ \ \ \ \ f(0)=0

f(x)=sech2x      f(0)=1f'(x)=sech^{2}x\ \ \ \ \ \ f'(0)=1

f(x)=2tanhx sech2x    f(0)=0f''(x)=-2tanhx\ sech^{2}x\ \ \ \ f''(0)=0

f(x)=(cosh 2x2)sech4x   f(0)=2f'''(x)=(cosh\ 2x-2)sech^{4}x\ \ \ f'''(0)=-2

f4(x)=2(sin(3x)11sinh x)f^{4}(x)=-2(sin(3x)-11sinh\ x)

tanh x0+x+02!x223!+0tanh\ x \approx0+x+\frac{0}{2!}x^{2}-\frac{2}{3!}+0

x13x2\approx x-\frac{1}{3}x^{2}

letting x=2πdLx=\frac{2\pi d}{L}

tanh2πdL2πdL13(2πdL)tanh \frac{2\pi d}{L}\approx \frac{2\pi d}{L}-\frac{1}{3}(\frac{2\pi d}{L})

now put it into the equation

v2=gL2πtanh2πdLv^{2}=\frac{gL}{2\pi}tanh\frac{2\pi d}{L}

gL2π(2πL13(2πdL)3)\approx\frac{gL}{2\pi}(\frac{2\pi}{L}-\frac{1}{3}(\frac{2\pi d}{L})^{3})

g(d13(2πdL)2)\approx g(d-\frac{1}{3}(\frac{2\pi d}{L})^{2})

in shallow water d and it simplifies to:

v2g(d0)v^2\approx g(d-0)

gd\approx gd

vgdv\approx \sqrt{gd}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS