If a water wave with length L moves with a velocity π£ across a body of water with depth d, as in figure below,
then
π£2 = ππΏ tanh 2ππ, 2π πΏ
a) If the water is deep, show that π£ β βππΏ. 2π
b) If the water is shallow, use the Maclaurin series for tanh to show that π£ β βππ. (Thus, in shallow water the velocity of a wave tends to be independent of the length of the wave.)
a)by definition we know that
"tanh(\\frac{2\\pi d}{L})=\\frac{e^{(\\frac{2\\pi d}{L})}-e^{-(\\frac{2\\pi d}{L})}}{e^{\\frac{2\\pi d}{L}}+e^{\\frac{2\\pi d}{L}}}"
"{lim}_{\\ d \\to\\infin}\\ \\ tanh(\\frac{2\\pi d}{L})=lim_{\\ d \\to\\infin}\\ \\frac{e^{(\\frac{2\\pi d}{L})}-e^{-(\\frac{2\\pi d}{L})}}{e^{\\frac{2\\pi d}{L}}+e^{\\frac{2\\pi d}{L}}}"
since we have a situation of "\\frac{\\infin}{\\infin}" we use L 'hopital's rule, which yield;
"lim_{d\\to\\infin} \\frac{4\\pi e^{4\\pi d}}{4\\pi e^{4\\pi d}}" but this is just "lim_{d\\to\\infin}\\ 1=1"
thus, we have shown that "lim_{d\\to\\infin}\\ tanh(\\frac{2\\pi d}{L})=1"
now we have that , "v=\\sqrt{(\\frac{gL}{2\\pi}).tanh(\\frac{2\\pi d}{L})}=\\sqrt{(\\frac{gL}{2\\pi}).1}"
therefore, "v\\approx \\sqrt{(\\frac{gL}{2\\pi}).}"
b)Find the maclaurin series for tanh x
"f(x)=tanh x\\ \\ \\ \\ \\ f(0)=0"
"f'(x)=sech^{2}x\\ \\ \\ \\ \\ \\ f'(0)=1"
"f''(x)=-2tanhx\\ sech^{2}x\\ \\ \\ \\ f''(0)=0"
"f'''(x)=(cosh\\ 2x-2)sech^{4}x\\ \\ \\ f'''(0)=-2"
"f^{4}(x)=-2(sin(3x)-11sinh\\ x)"
"tanh\\ x \\approx0+x+\\frac{0}{2!}x^{2}-\\frac{2}{3!}+0"
"\\approx x-\\frac{1}{3}x^{2}"
letting "x=\\frac{2\\pi d}{L}"
"tanh \\frac{2\\pi d}{L}\\approx \\frac{2\\pi d}{L}-\\frac{1}{3}(\\frac{2\\pi d}{L})"
now put it into the equation
"v^{2}=\\frac{gL}{2\\pi}tanh\\frac{2\\pi d}{L}"
"\\approx\\frac{gL}{2\\pi}(\\frac{2\\pi}{L}-\\frac{1}{3}(\\frac{2\\pi d}{L})^{3})"
"\\approx g(d-\\frac{1}{3}(\\frac{2\\pi d}{L})^{2})"
in shallow water d and it simplifies to:
"v^2\\approx g(d-0)"
"\\approx gd"
"v\\approx \\sqrt{gd}"
Comments
Leave a comment