Classify the Critical points of f(x,y)=4+x^3+y^3-3xy
"f'_x=3x^2-3y"
"f'_y=3y^2-3x"
Find the critical point(s)
"y=x^2""x^4-x=0"
"x(x-1)(x^2+x+1)=0""x=y^2"
Critical point "(0, 0)," critical point "(1, 1)."
Use Second Derivatives Test
"f''_{xy}=-3=f''_{yx}"
"f''_{yy}=6y"
"D=\\begin{vmatrix}\n f''_{xx}& f''_{xy} \\\\\n f''_{yx} & f''_{yy}\n\\end{vmatrix}=\\begin{vmatrix}\n 6x & -3 \\\\\n -3 & 6y\n\\end{vmatrix}=36xy-9"
Critical point "(0, 0)"
"D(0, 0)=0-9=-9<0""f(0,0)" is not a local maximum or minimum.
Point "(0,0)" is a saddle point of "f."
Critical point "(1, 1)"
"D(1, 1)=36(1)(1)-9=27>0""f''_{xx}(1,1)=6(1)=6>0."
"f(1,1)" is a local minimum.
Comments
Leave a comment