f x ′ = 3 x 2 − 3 y f'_x=3x^2-3y f x ′ = 3 x 2 − 3 y
f y ′ = 3 y 2 − 3 x f'_y=3y^2-3x f y ′ = 3 y 2 − 3 x
Find the critical point(s)
3 x 2 − 3 y = 0 3x^2-3y=0 3 x 2 − 3 y = 0 3 y 2 − 3 x = 0 3y^2-3x=0 3 y 2 − 3 x = 0
y = x 2 y=x^2 y = x 2 x 4 − x = 0 x^4-x=0 x 4 − x = 0
x ( x − 1 ) ( x 2 + x + 1 ) = 0 x(x-1)(x^2+x+1)=0 x ( x − 1 ) ( x 2 + x + 1 ) = 0 x = y 2 x=y^2 x = y 2 Critical point ( 0 , 0 ) , (0, 0), ( 0 , 0 ) , critical point ( 1 , 1 ) . (1, 1). ( 1 , 1 ) .
Use Second Derivatives Test
f x x ′ ′ = 6 x f''_{xx}=6x f xx ′′ = 6 x
f x y ′ ′ = − 3 = f y x ′ ′ f''_{xy}=-3=f''_{yx} f x y ′′ = − 3 = f y x ′′
f y y ′ ′ = 6 y f''_{yy}=6y f yy ′′ = 6 y
D = ∣ f x x ′ ′ f x y ′ ′ f y x ′ ′ f y y ′ ′ ∣ = ∣ 6 x − 3 − 3 6 y ∣ = 36 x y − 9 D=\begin{vmatrix}
f''_{xx}& f''_{xy} \\
f''_{yx} & f''_{yy}
\end{vmatrix}=\begin{vmatrix}
6x & -3 \\
-3 & 6y
\end{vmatrix}=36xy-9 D = ∣ ∣ f xx ′′ f y x ′′ f x y ′′ f yy ′′ ∣ ∣ = ∣ ∣ 6 x − 3 − 3 6 y ∣ ∣ = 36 x y − 9
Critical point ( 0 , 0 ) (0, 0) ( 0 , 0 )
D ( 0 , 0 ) = 0 − 9 = − 9 < 0 D(0, 0)=0-9=-9<0 D ( 0 , 0 ) = 0 − 9 = − 9 < 0 f ( 0 , 0 ) f(0,0) f ( 0 , 0 ) is not a local maximum or minimum.
Point ( 0 , 0 ) (0,0) ( 0 , 0 ) is a saddle point of f . f. f .
Critical point ( 1 , 1 ) (1, 1) ( 1 , 1 )
D ( 1 , 1 ) = 36 ( 1 ) ( 1 ) − 9 = 27 > 0 D(1, 1)=36(1)(1)-9=27>0 D ( 1 , 1 ) = 36 ( 1 ) ( 1 ) − 9 = 27 > 0 f x x ′ ′ ( 1 , 1 ) = 6 ( 1 ) = 6 > 0. f''_{xx}(1,1)=6(1)=6>0. f xx ′′ ( 1 , 1 ) = 6 ( 1 ) = 6 > 0.
f ( 1 , 1 ) f(1,1) f ( 1 , 1 ) is a local minimum.
Comments