fx′=3x2−3y
fy′=3y2−3x
Find the critical point(s)
3x2−3y=03y2−3x=0
y=x2x4−x=0
x(x−1)(x2+x+1)=0x=y2Critical point (0,0), critical point (1,1).
Use Second Derivatives Test
fxx′′=6x
fxy′′=−3=fyx′′
fyy′′=6y
D=∣∣fxx′′fyx′′fxy′′fyy′′∣∣=∣∣6x−3−36y∣∣=36xy−9
Critical point (0,0)
D(0,0)=0−9=−9<0 f(0,0) is not a local maximum or minimum.
Point (0,0) is a saddle point of f.
Critical point (1,1)
D(1,1)=36(1)(1)−9=27>0fxx′′(1,1)=6(1)=6>0.
f(1,1) is a local minimum.
Comments