Question #303305

Classify the Critical points of f(x,y)=4+x^3+y^3-3xy


1
Expert's answer
2022-03-01T13:55:04-0500

fx=3x23yf'_x=3x^2-3y

fy=3y23xf'_y=3y^2-3x

Find the critical point(s)


3x23y=03x^2-3y=03y23x=03y^2-3x=0

y=x2y=x^2x4x=0x^4-x=0

x(x1)(x2+x+1)=0x(x-1)(x^2+x+1)=0x=y2x=y^2

Critical point (0,0),(0, 0), critical point (1,1).(1, 1).


Use Second Derivatives Test


fxx=6xf''_{xx}=6x

fxy=3=fyxf''_{xy}=-3=f''_{yx}

fyy=6yf''_{yy}=6y

D=fxxfxyfyxfyy=6x336y=36xy9D=\begin{vmatrix} f''_{xx}& f''_{xy} \\ f''_{yx} & f''_{yy} \end{vmatrix}=\begin{vmatrix} 6x & -3 \\ -3 & 6y \end{vmatrix}=36xy-9

Critical point (0,0)(0, 0)

D(0,0)=09=9<0D(0, 0)=0-9=-9<0

f(0,0)f(0,0) is not a local maximum or minimum.

Point (0,0)(0,0) is a saddle point of f.f.


Critical point (1,1)(1, 1)

D(1,1)=36(1)(1)9=27>0D(1, 1)=36(1)(1)-9=27>0

fxx(1,1)=6(1)=6>0.f''_{xx}(1,1)=6(1)=6>0.


f(1,1)f(1,1) is a local minimum.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS