Differentiate both sides with respect to x
(x2(x2+y2))′=(y2)′ Use the Chain Rule
4x3+2xy2+2x2yy′=2yy′ Solve for y′
y′=2y(1−x2)4x3+2xy2 Point (22,22)
y′(22)=2(22)(1−(22)2)4(22)3+2(22)(22)2=2The tangent line to the graph
y−22=2(x−22)
y=2x−22
Comments