Differentiate both sides with respect to x x x
( x 2 ( x 2 + y 2 ) ) ′ = ( y 2 ) ′ (x^2(x^2+y^2))'=(y^2)' ( x 2 ( x 2 + y 2 ) ) ′ = ( y 2 ) ′ Use the Chain Rule
4 x 3 + 2 x y 2 + 2 x 2 y y ′ = 2 y y ′ 4x^3+2xy^2+2x^2yy'=2yy' 4 x 3 + 2 x y 2 + 2 x 2 y y ′ = 2 y y ′ Solve for y ′ y' y ′
y ′ = 4 x 3 + 2 x y 2 2 y ( 1 − x 2 ) y'=\dfrac{4x^3+2xy^2}{2y(1-x^2)} y ′ = 2 y ( 1 − x 2 ) 4 x 3 + 2 x y 2 Point ( 2 2 , 2 2 ) (\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}) ( 2 2 , 2 2 )
y ′ ( 2 2 ) = 4 ( 2 2 ) 3 + 2 ( 2 2 ) ( 2 2 ) 2 2 ( 2 2 ) ( 1 − ( 2 2 ) 2 ) = 2 y'(\dfrac{\sqrt{2}}{2})=\dfrac{4(\dfrac{\sqrt{2}}{2})^3+2(\dfrac{\sqrt{2}}{2})(\dfrac{\sqrt{2}}{2})^2}{2(\dfrac{\sqrt{2}}{2})(1-(\dfrac{\sqrt{2}}{2})^2)}=2 y ′ ( 2 2 ) = 2 ( 2 2 ) ( 1 − ( 2 2 ) 2 ) 4 ( 2 2 ) 3 + 2 ( 2 2 ) ( 2 2 ) 2 = 2 The tangent line to the graph
y − 2 2 = 2 ( x − 2 2 ) y-\dfrac{\sqrt{2}}{2}=2(x-\dfrac{\sqrt{2}}{2}) y − 2 2 = 2 ( x − 2 2 )
y = 2 x − 2 2 y=2x-\dfrac{\sqrt{2}}{2} y = 2 x − 2 2
Comments