Answer to Question #301989 in Calculus for Arvie

Question #301989

Evaluate the integral of sinΒ³ y cos 2y dy from 0 to πœ‹/2.

1
Expert's answer
2022-02-27T12:07:43-0500

∫0Ο€2sin⁑3x cos⁑2x dx=∫0Ο€2(3sin⁑xβˆ’sin⁑3x)cos⁑2x4 dx(sin⁑3x=3sin⁑xβˆ’sin⁑3x4)=∫0Ο€23sin⁑xcos⁑2xβˆ’sin⁑3xcos⁑2x4 dxUsing sin⁑αcos⁑β=12(sin⁑(Ξ±βˆ’Ξ²)+sin⁑(Ξ±+Ξ²)) we get=∫0Ο€218(3(sin⁑3xβˆ’sin⁑x)βˆ’(sin⁑x+sin⁑5x)) dx=18∫0Ο€2(3sin⁑3xβˆ’3sin⁑xβˆ’sin⁑xβˆ’sin⁑5x) dx=18∫0Ο€2(3sin⁑3xβˆ’4sin⁑xβˆ’sin⁑5x) dx=18(3(βˆ’cos⁑3x3)βˆ’4(βˆ’cos⁑x)βˆ’(βˆ’cos⁑5x5))0Ο€2=18(βˆ’cos⁑3x+4cos⁑x+cos⁑5x5)0Ο€2=18((βˆ’cos⁑(3Ο€2)+4cos⁑(Ο€2)+cos⁑(5Ο€2)5)βˆ’(βˆ’cos⁑0+4cos⁑0+cos⁑05))=18(0βˆ’(βˆ’1+4+15))(Since cos⁑(2n+1)Ο€2=0 βˆ€n∈N)=βˆ’25=βˆ’0.4\begin{aligned} \int_{0}^{\frac{\pi}{2}} \sin^{3}x ~\cos 2x~ dx &= \int_{0}^{\frac{\pi}{2}} \dfrac{(3\sin x - \sin 3x)\cos 2x}{4}~ dx \quad \left(\sin^{3} x = \dfrac{3\sin x-\sin 3x}{4}\right)\\ &= \int_{0}^{\frac{\pi}{2}} \dfrac{3\sin x \cos 2x - \sin 3x \cos 2x}{4}~ dx\\ & \text{Using~} \sin \alpha \cos \beta = \dfrac{1}{2}(\sin(\alpha-\beta)+ \sin(\alpha+\beta)) \text{~we get}\\ &= \int_{0}^{\frac{\pi}{2}} \frac{1}{8}\left(3(\sin 3x - \sin x) - (\sin x + \sin 5x)\right)~ dx\\ &= \dfrac{1}{8} \int_{0}^{\frac{\pi}{2}} (3 \sin 3x - 3\sin x - \sin x - \sin 5x)~ dx\\ &= \dfrac{1}{8} \int_{0}^{\frac{\pi}{2}} (3 \sin 3x - 4\sin x - \sin 5x)~ dx\\ &= \dfrac{1}{8} \left(3 \left(\dfrac{-\cos 3x}{3}\right) - 4(-\cos x) - \left(-\dfrac{\cos 5x}{5}\right)\right)_{0}^{\frac{\pi}{2}}\\ &= \dfrac{1}{8} \left(-\cos 3x + 4\cos x + \dfrac{\cos 5x}{5}\right)_{0}^{\frac{\pi}{2}}\\ &= \dfrac{1}{8} \left((-\cos(\dfrac{3\pi}{2})+ 4\cos (\frac{\pi}{2}) + \dfrac{\cos (\frac{5\pi}{2})}{5})\right. - \\&\qquad \qquad\qquad\qquad\qquad\qquad\left.(-\cos 0+ 4\cos 0 + \dfrac{\cos 0}{5})\right)\\ &= \dfrac{1}{8} \left(0 - (-1+4+\dfrac{1}{5})\right)\quad(\text{Since~} \cos\frac{(2n + 1)\pi}{2} = 0 ~\forall n\in \N) \\ &= -\dfrac{2}{5} = -0.4 \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment