β«02Οββsin3x cos2x dxβ=β«02Οββ4(3sinxβsin3x)cos2xβ dx(sin3x=43sinxβsin3xβ)=β«02Οββ43sinxcos2xβsin3xcos2xβ dxUsing sinΞ±cosΞ²=21β(sin(Ξ±βΞ²)+sin(Ξ±+Ξ²)) we get=β«02Οββ81β(3(sin3xβsinx)β(sinx+sin5x)) dx=81ββ«02Οββ(3sin3xβ3sinxβsinxβsin5x) dx=81ββ«02Οββ(3sin3xβ4sinxβsin5x) dx=81β(3(3βcos3xβ)β4(βcosx)β(β5cos5xβ))02Οββ=81β(βcos3x+4cosx+5cos5xβ)02Οββ=81β((βcos(23Οβ)+4cos(2Οβ)+5cos(25Οβ)β)β(βcos0+4cos0+5cos0β))=81β(0β(β1+4+51β))(Since cos2(2n+1)Οβ=0 βnβN)=β52β=β0.4β
Comments
Leave a comment