Evaluate the integral of sin³ y cos 2y dy from 0 to 𝜋/2.
We will first use a substitution "\\begin{cases} u&=\\cos y \\\\ du&=-\\sin y dy \\end{cases}" and use the fact that "\\begin{cases} \\sin^2 y = 1-\\cos^2 y \\\\ \\cos2y = 2\\cos^2 y -1 \\end{cases}", which transforms the integral :
"\\int_0^{\\pi\/2}\\sin^3 y \\cos(2y) dy=-\\int_1^0 (1-u^2)(2u^2-1)du"
This integral can be easily calculated (we have used the minus sign before the integral to transform it into "\\int_0^1" ) :
"\\int_0^1(3u^2-2u^4-1)du = [u^3-\\frac{2}{5} u^5-u]^1_0=1-\\frac{2}{5}-1=-\\frac{2}{5}"
Comments
Leave a comment