Using wiestrass M test show that the following series converges uniformly Sigma infinity n=1 n^3 x^n x belongs to[-1/3,1/3]
The series
"\\quad \\quad \\quad \\quad \\quad \\quad \\sum _{ n=1 }^{ \\infty }{ { n }^{ 3 }{ x }^{ n }{x} } \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\ (1)"
is a power series , the radius of convergence of which is
"r=\\ \\lim _{ n\\rightarrow \\infty }{ \\frac { { n }^{ 3 } }{ { (n+1) }^{ 3 } } } =1"
"\\forall \\ n\\ge 1\\quad and\\quad \\forall x\\in \\left[\\frac{-1}{3},\\frac { 1 }{ 3 } \\right] :\\ 0\\le { n }^{ 3 }{ x }^{ n }{x}\\le \\frac { { n }^{ 3 } }{ { 3 }^{ n } } \\ \\quad \\quad \\quad \\quad \\ \\quad (2)"
The series (1) converges in the interval "(-1,1)". The point "x=\\frac{1}{3}" belongs to "(-1,1)". Consequently series
"\\quad\\quad \\quad\\quad\\quad\\quad\\quad\\sum _{ n=1 }^{ \\infty }{ \\frac { { n }^{ 2 } }{ { 3 }^{ n } } } \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad \\quad\\quad\\quad\\quad\\quad\\ (3)"
is convergent. According to the Weierstrass' M-Test , the series "\\sum _{ n=1 }^{ \\infty }{ { n }^{ 3 }{ x }^{ n }{x} }"
converges uniformly in the interval "\\left[ \\frac{-1}{3},\\frac { 1 }{ 3} \\right]" .
Option 2) The convergence of series (3) can be proved by the d'Alembert criterion
"{ a }_{ n }:=\\frac { { n }^{ 2 } }{ { 3 }^{ n } } ,\\lim _{ n\\rightarrow \\infty }{ \\frac { { a }_{ n+1 } }{ { a }_{ n } } } =\\lim _{ n\\rightarrow \\infty }{ \\frac { { (n+1) }^{ 2 } }{ { 3 }^{ n+1 } } \\cdot \\frac { { 3 }^{ n } }{ { n }^{ 2 } } } =\\frac { 1 }{ 3 } <1"
Given the fulfillment of (2), according to the Weierstrass' M-Test, we obtain the series (1) converges uniformly in the interval "[\\frac{-1}{3},\\frac{1}{3}]" .
Comments
Leave a comment