1. The following table gives values of for values of close to "7," but not
equal to "7."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n x & f(x) \\\\ \\hline\n 6 & 2.500000 \\\\\n \\hdashline\n 6.5 & 2.222222 \\\\\n \\hdashline\n 6.9 & 2.040816\\\\\n \\hdashline\n 6.99 & 2.004008 \\\\\n \\hdashline\n 6.999 & 2.000400 \\\\\n \\hdashline\n 6.9999 & 2.000040 \\\\\n \\hdashline\n 7.0001 & 1.999960 \\\\\n \\hdashline\n 7.001 & 1.999600 \\\\\n \\hdashline\n 7.01 & 1.996008 \\\\\n \\hdashline\n 7.1 & 1.960784 \\\\\n \\hdashline\n 7.5 & 1.818182 \\\\\n \\hdashline\n 8 & 1.666667 \\\\\n \\hdashline\n\\end{array}"
"\\lim\\limits_{x\\to 7}\\dfrac{10}{x-2}=2"
2. The following table gives values of for values of close to "2," but not
equal to "1."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n x & f(x) \\\\ \\hline\n 0 & 3.000000 \\\\\n \\hdashline\n 0.5 & 2.600000 \\\\\n \\hdashline\n 0.9 & 2.379310\\\\\n \\hdashline\n 0.99 & 2.337793 \\\\\n \\hdashline\n 0.999 & 2.333778 \\\\\n \\hdashline\n 0.9999 & 2.333378 \\\\\n \\hdashline\n 1.0001 & 2.333289 \\\\\n \\hdashline\n 1.001 & 2.332889 \\\\\n \\hdashline\n 1.01 & 2.328904 \\\\\n \\hdashline\n 1.1 & 2.290323 \\\\\n \\hdashline\n 1.5 & 2.142857 \\\\\n \\hdashline\n 2 & 2.000000 \\\\\n \\hdashline\n\\end{array}"
"\\lim\\limits_{x\\to 1}\\dfrac{x+6}{x+2}=\\dfrac{7}{3}"
3. The following table gives values of for values of close to "-1," but not
equal to "-1."
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n x & f(x) \\\\ \\hline\n -2 & -0.500000 \\\\\n \\hdashline\n -1.5 & -0.666667 \\\\\n \\hdashline\n -1.1 & -0.909091\\\\\n \\hdashline\n -1.01.99 & -0.990099 \\\\\n \\hdashline\n -1.001 & -0.999001\\\\\n \\hdashline\n -1.0001 & -0.999900 \\\\\n \\hdashline\n -0.9999 & -1.000200 \\\\\n \\hdashline\n -0.999 & -1.001999 \\\\\n \\hdashline\n -0.99 & -1.0199\\\\\n \\hdashline\n -0.9 & -1.19 \\\\\n \\hdashline\n -0.5 & -1.75 \\\\\n \\hdashline\n 0 & -2 \\\\\n \\hdashline\n\\end{array}"
"\\lim\\limits_{x\\to -1}f(x)=-1"
Comments
Leave a comment