Answer to Question #304043 in Calculus for Luna Heart

Question #304043

Construct a table of values to investigate the following limits.


1. lim (10/x-2)

x-> 7


2. lim (x+6/x+2)

x-> 1


3. lim f(x)

x-> -1

If f(x) { 1/x if x ≤ -1}

If f(x) { x2-2 if x > -1}



1
Expert's answer
2022-03-02T11:48:41-0500

1. The following table gives values of for values of close to 7,7, but not

equal to 7.7.


xf(x)62.5000006.52.2222226.92.0408166.992.0040086.9992.0004006.99992.0000407.00011.9999607.0011.9996007.011.9960087.11.9607847.51.81818281.666667\def\arraystretch{1.5} \begin{array}{c:c} x & f(x) \\ \hline 6 & 2.500000 \\ \hdashline 6.5 & 2.222222 \\ \hdashline 6.9 & 2.040816\\ \hdashline 6.99 & 2.004008 \\ \hdashline 6.999 & 2.000400 \\ \hdashline 6.9999 & 2.000040 \\ \hdashline 7.0001 & 1.999960 \\ \hdashline 7.001 & 1.999600 \\ \hdashline 7.01 & 1.996008 \\ \hdashline 7.1 & 1.960784 \\ \hdashline 7.5 & 1.818182 \\ \hdashline 8 & 1.666667 \\ \hdashline \end{array}

limx710x2=2\lim\limits_{x\to 7}\dfrac{10}{x-2}=2



2. The following table gives values of for values of close to 2,2, but not

equal to 1.1.


xf(x)03.0000000.52.6000000.92.3793100.992.3377930.9992.3337780.99992.3333781.00012.3332891.0012.3328891.012.3289041.12.2903231.52.14285722.000000\def\arraystretch{1.5} \begin{array}{c:c} x & f(x) \\ \hline 0 & 3.000000 \\ \hdashline 0.5 & 2.600000 \\ \hdashline 0.9 & 2.379310\\ \hdashline 0.99 & 2.337793 \\ \hdashline 0.999 & 2.333778 \\ \hdashline 0.9999 & 2.333378 \\ \hdashline 1.0001 & 2.333289 \\ \hdashline 1.001 & 2.332889 \\ \hdashline 1.01 & 2.328904 \\ \hdashline 1.1 & 2.290323 \\ \hdashline 1.5 & 2.142857 \\ \hdashline 2 & 2.000000 \\ \hdashline \end{array}

limx1x+6x+2=73\lim\limits_{x\to 1}\dfrac{x+6}{x+2}=\dfrac{7}{3}

3. The following table gives values of for values of close to 1,-1, but not

equal to 1.-1.


xf(x)20.5000001.50.6666671.10.9090911.01.990.9900991.0010.9990011.00010.9999000.99991.0002000.9991.0019990.991.01990.91.190.51.7502\def\arraystretch{1.5} \begin{array}{c:c} x & f(x) \\ \hline -2 & -0.500000 \\ \hdashline -1.5 & -0.666667 \\ \hdashline -1.1 & -0.909091\\ \hdashline -1.01.99 & -0.990099 \\ \hdashline -1.001 & -0.999001\\ \hdashline -1.0001 & -0.999900 \\ \hdashline -0.9999 & -1.000200 \\ \hdashline -0.999 & -1.001999 \\ \hdashline -0.99 & -1.0199\\ \hdashline -0.9 & -1.19 \\ \hdashline -0.5 & -1.75 \\ \hdashline 0 & -2 \\ \hdashline \end{array}

limx1f(x)=1\lim\limits_{x\to -1}f(x)=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment