Find the center of mass of a triangular lamina with vertices (0,0),(1,0) and (0,2)
if the density function is ρ(x,y)=1+3x+3y
Let "A=(0,2), B=(1, 0), O=(0,0)."
Line OA: "x=0, 0\\leq y\\leq2"
LineAB: "y=-2x+2, 0\\leq x\\leq1"
Line OB: "y=0, 0\\leq x\\leq 1"
Given "\u03c1(x,y)=1+3x+3y"
Find the mass of the lamina
Mass of the lamina is "4" units of mas.
Find the coordinates of the center of mass
"={1\\over 4}\\displaystyle\\int_{0}^1x\\big[y+3xy+{3y^2\\over 2}\\big]\\begin{matrix}\n 2-2x \\\\\n 0 \n\\end{matrix}dx"
"+{1\\over 4}\\displaystyle\\int_{0}^1\\big(6x-12x^2+6x^3\\big)dx"
"\\bar{y}={1\\over m}\\iint_Dy\\rho(x,y)dA"
"+{1\\over 4}\\displaystyle\\int_{0}^1\\big(8-24x+24x^2-8x^3\\big)dx"
"={1\\over 4}\\big[-{1\\over 2}x^4+{14\\over 3}x^3-11x^2+10x\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}={19\\over 24}"
Center of mass "\\big(\\dfrac{1}{3},\\dfrac{19}{24}\\big)"
Comments
Leave a comment