Question #280867

Find the area between y=x^2 and x+y-2=0


1
Expert's answer
2021-12-20T08:07:14-0500
y=x2y=x^2

Substitute


x+x22=0x+x^2-2=0

(x+2)(x1)=0(x+2)(x-1)=0

x1=2,x2=1x_1=-2, x_2=1

Point(2,4), Point(1,1).Point(-2, 4), \ Point(1,1).


x+y2=0x+y-2=0

y=x+2y=-x+2

A=21(x+2x2)dxA=\displaystyle\int_{-2}^{1}(-x+2-x^2)dx

=[x33+2xx22]12=\big[-\dfrac{x^3}{3}+2x-\dfrac{x^2}{2}\big]\begin{matrix} 1 \\ -2 \end{matrix}

=133+2(1)122((2)33+2(2)(2)22)=-\dfrac{1^3}{3}+2(1)-\dfrac{1^2}{2}-(\dfrac{(-2)^3}{3}+2(-2)-\dfrac{(-2)^2}{2})

=13+21283+4+2=92(units2)=-\dfrac{1}{3}+2-\dfrac{1}{2}-\dfrac{8}{3}+4+2=\dfrac{9}{2}({units}^2)



Area=92Area=\dfrac{9}{2} square units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS