Find the area between y=x^2 and x+y-2=0
Substitute
"(x+2)(x-1)=0"
"x_1=-2, x_2=1"
"Point(-2, 4), \\ Point(1,1)."
"y=-x+2"
"A=\\displaystyle\\int_{-2}^{1}(-x+2-x^2)dx"
"=\\big[-\\dfrac{x^3}{3}+2x-\\dfrac{x^2}{2}\\big]\\begin{matrix}\n 1 \\\\\n -2\n\\end{matrix}"
"=-\\dfrac{1^3}{3}+2(1)-\\dfrac{1^2}{2}-(\\dfrac{(-2)^3}{3}+2(-2)-\\dfrac{(-2)^2}{2})"
"=-\\dfrac{1}{3}+2-\\dfrac{1}{2}-\\dfrac{8}{3}+4+2=\\dfrac{9}{2}({units}^2)"
"Area=\\dfrac{9}{2}" square units.
Comments
Leave a comment