Answer to Question #280867 in Calculus for Venkatesh

Question #280867

Find the area between y=x^2 and x+y-2=0


1
Expert's answer
2021-12-20T08:07:14-0500
"y=x^2"

Substitute


"x+x^2-2=0"

"(x+2)(x-1)=0"

"x_1=-2, x_2=1"

"Point(-2, 4), \\ Point(1,1)."


"x+y-2=0"

"y=-x+2"

"A=\\displaystyle\\int_{-2}^{1}(-x+2-x^2)dx"

"=\\big[-\\dfrac{x^3}{3}+2x-\\dfrac{x^2}{2}\\big]\\begin{matrix}\n 1 \\\\\n -2\n\\end{matrix}"

"=-\\dfrac{1^3}{3}+2(1)-\\dfrac{1^2}{2}-(\\dfrac{(-2)^3}{3}+2(-2)-\\dfrac{(-2)^2}{2})"

"=-\\dfrac{1}{3}+2-\\dfrac{1}{2}-\\dfrac{8}{3}+4+2=\\dfrac{9}{2}({units}^2)"



"Area=\\dfrac{9}{2}" square units.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog