Question #280664

For the following exercises, draw the given optimization problem and solve.

1) Find the volume of the largest right circular cylinder that fits in a sphere of radius 1.


1
Expert's answer
2021-12-19T14:54:04-0500

Let R=R= the radius of the sphere, r=r= the radius of a base of a inscribed cylinder, h=h= the height of a cylinder.



Then Vcyl=πr2h.V_{cyl}=\pi r^2 h.

By the Pythagorean Theorem


R2=r2+(h/2)2  constR^2=r^2+(h/2)^2\ \ const

r2=R2(h/2)2r^2=R^2-(h/2)^2

Substitute


Vcyl=V(h)=π(R2(h/2)2)hV_{cyl}=V(h)=\pi (R^2-(h/2)^2) h

V(h)=π4(4R2hh3),0<h<2RV(h)=\dfrac{\pi}{4}(4R^2h-h^3) , 0<h<2R

Find the first derivative with respect to hh


V(h)=π4(4R23h2)V'(h)=\dfrac{\pi}{4}(4R^2-3h^2)

Find the critical number(s)


V(h)=0=>π4(4R23h2)=0V'(h)=0=>\dfrac{\pi}{4}(4R^2-3h^2)=0

h1=23R,h2=23Rh_1=-\dfrac{2}{\sqrt{3}}R, h_2=\dfrac{2}{\sqrt{3}}R

If 0<h<23R,V(h)>0,V(h)0<h<\dfrac{2}{\sqrt{3}}R, V'(h)>0, V(h) increases.

If 23R<h<2R,V(h)<0,V(h)\dfrac{2}{\sqrt{3}}R<h<2R, V'(h)<0, V(h) decreases.

The function V(h)V(h) has the absolute maximum on [0,2R][0, 2R] at h=23R.h=\dfrac{2}{\sqrt{3}}R.


r2=R2(223R)2=23R2r^2=R^2-(\dfrac{2}{2\sqrt{3}}R)^2=\dfrac{2}{3}R^2

r=23Rr=\dfrac{\sqrt{2}}{\sqrt{3}}R

Vcyl max=π(23R2)(23R)V_{cyl\ max}=\pi(\dfrac{2}{3}R^2)(\dfrac{2}{\sqrt{3}}R)

=43π9R3(units3)=\dfrac{4\sqrt{3}\pi}{9}R^3({units}^3)



If R=1,R=1, then Vcyl max=43π9units3.V_{cyl\ max}=\dfrac{4\sqrt{3}\pi}{9}{units}^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS