Let R= the radius of the sphere, r= the radius of a base of a inscribed cylinder, h= the height of a cylinder.
Then Vcyl=πr2h.
By the Pythagorean Theorem
R2=r2+(h/2)2 const
r2=R2−(h/2)2 Substitute
Vcyl=V(h)=π(R2−(h/2)2)h
V(h)=4π(4R2h−h3),0<h<2R Find the first derivative with respect to h
V′(h)=4π(4R2−3h2) Find the critical number(s)
V′(h)=0=>4π(4R2−3h2)=0
h1=−32R,h2=32R If 0<h<32R,V′(h)>0,V(h) increases.
If 32R<h<2R,V′(h)<0,V(h) decreases.
The function V(h) has the absolute maximum on [0,2R] at h=32R.
r2=R2−(232R)2=32R2
r=32R
Vcyl max=π(32R2)(32R)
=943πR3(units3)
If R=1, then Vcyl max=943πunits3.
Comments