Find the area bounded by the given curves; y= 1/(1+x^2), x=1,x=-1. sketch the curve indicating the area bounded.
y=1/(1+x2),x=1,x=−1y= 1/(1+x^2), x=1,x=-1y=1/(1+x2),x=1,x=−1
Black lines indicating area of bounded region.
Area (A)
=∫−1111+x2dx=[tan−1x]−11=tan−1[1]−tan−1[−1]=π4−(−π4)=π4+π4=π2=\int_{-1}^{1} \frac{1}{1+x^2}dx=[\tan^{-1} x]_{-1}^{1}=\tan^{-1} [1]-tan^{-1} [-1]\\ =\frac{\pi}{4}-(-\frac{\pi}{4})=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2}=∫−111+x21dx=[tan−1x]−11=tan−1[1]−tan−1[−1]=4π−(−4π)=4π+4π=2π
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments