Answer to Question #280306 in Calculus for Emili

Question #280306

Show whether the following functions are uniformly continuous on the given domain.

1. F(x)=x^3 on [-1,1]

2. F(x)= 2x/2x-1 on [1, infinity]

3. F(x)= sinx/x on (0,1)

4. F(x)= 1/x on (0,1)



1
Expert's answer
2021-12-17T13:26:16-0500

"\\text{Question 1}\n\n\\\\\n\\text{\\textbf{Proof} } \\text{Let } x_1, x_2 \\text{ be any two points of } [-1,1] \\text{ so that } \\left| {{x_1}} \\right| \\le 1,\\left| {{x_2}} \\right| \\le 1 \n\n\\\\\n\\text{Now. } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| = \\left| {x_1^3 - x_2^3} \\right| = \\left| {\\left( {{x_1} - {x_2}} \\right)\\left( {x_1^2 + {x_1}{x_2} + x_2^2} \\right)} \\right| \n\n\\\\\n\\hspace{95pt} = \\left| {{x_1} - {x_2}} \\right|\\left| {x_1^2 + {x_1}{x_2} + x_2^2} \\right| \n\\\\\n\\hspace{95pt} \\le \\left| {{x_1} - {x_2}} \\right|\\left( {{{\\left| {{x_1}} \\right|}^2} + \\left| {{x_1}} \\right|\\left| {{x_2}} \\right| + {{\\left| {{x_2}} \\right|}^2}} \\right)\n\\\\\n\\hspace{95pt} \\le 3\\left| {{x_1} - {x_2}} \\right| < \\epsilon \\text{ whenever } \\left| {{x_1} - {x_2}} \\right| < \\frac{\\epsilon }{3}\n\n\\\\\n\\text{choose } \\delta = \\frac{\\epsilon }{3}, \\text{ then } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| < \\epsilon \\text{ whenever } \\left| {{x_1} - {x_2}} \\right| < \\delta \n\\\\\n\\therefore f \\text{ is uniformly continuous}\n\n\\\\\n\n\\text{Question 2}\n\n\\\\\n\\text{\\textbf{Proof} } \\text{Let } \\epsilon > 0 \\text{ be given}\n\\\\\n\\text{Let } x_1, x_2 \\text{ be any two points of } [1,\\infty) \\text{ so that } 1 \\le {x_1} \\text{ and } 1 \\le {x_2}\n\\\\\n\\hspace{30pt} \\Rightarrow 2{x_1} - 1 \\ge 1 \\quad \\text{and } 2{x_2} - 1\n\\\\\n\\hspace{30pt} \\Rightarrow \\left| {2{x_1} - 1} \\right| \\ge 1 \\quad \\text{and } \\left| {2{x_2} - 1} \\right| \\ge 1\n\\\\\n\\hspace{30pt} \\Rightarrow \\frac{1}{{\\left| {2{x_1} - 1} \\right|}} \\le 1 \\quad \\text{and } \\Rightarrow \\frac{1}{{\\left| {2{x_2} - 1} \\right|}} \\le 1 \n\\\\\n\\text{Now } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| = \\left| {\\frac{{2{x_1}}}{{2{x_1} - 1}} - \\frac{{2{x_2}}}{{2{x_2} - 1}}} \\right|\n\\\\\n\\hspace{95pt} = \\left| {\\frac{{2{x_1}\\left( {2{x_2} - 1} \\right) - 2{x_2}\\left( {2{x_1} - 1} \\right)}}{{\\left( {2{x_1} - 1} \\right)\\left( {2{x_2} - 1} \\right)}}} \\right| = \\frac{{2\\left| {{x_1} - {x_2}} \\right|}}{{\\left| {2{x_1} - 1} \\right|\\left| {2{x_2} - 1} \\right|}} \n\\\\\n\\hspace{95pt} \\le 2\\left| {{x_1} - {x_2}} \\right| < \\epsilon \\text{ whenever } \\left| {{x_1} - {x_2}} \\right| < \\frac{\\epsilon }{2}\n\\\\\n\\text{choose } \\delta = \\frac{\\epsilon }{2}, \\text{ then } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| < \\epsilon \\text{ whenever } \\left| {{x_1} - {x_2}} \\right| < \\delta \n\\\\\n\\therefore f \\text{ is uniformly continuous}\n\\\\\n\n\\\\\n\n\\text{Question 3}\n\n\\\\\n\\text{\\textbf{Proof} } \\text{Let } \\epsilon > 0 \\text{ be given}\n\\\\\n\\text{Let } x_1, x_2 \\text{ be any two points of } (0,1) \\text{ so that } 0 < {x_1}<1 \\text{ and } 0 < {x_2}<1\n\\\\\n\\text{Now } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| = \\left| {\\frac{{\\sin \\left( {{x_1}} \\right)}}{{{x_1}}} - \\frac{{\\sin \\left( {{x_2}} \\right)}}{{{x_2}}}} \\right| = \\left| {\\frac{{{x_2}\\sin \\left( {{x_1}} \\right) - {x_1}\\sin \\left( {{x_2}} \\right)}}{{{x_1}{x_2}}}} \\right|\n\\\\\n\\hspace{95pt} = \\frac{{\\left| {{x_2}\\sin \\left( {{x_1}} \\right) - {x_1}\\sin \\left( {{x_2}} \\right)} \\right|}}{{\\left| {{x_1}} \\right|\\left| {{x_2}} \\right|}} < \\left| {{x_2}{x_1} - {x_1}{x_2}} \\right| < \\left| {{x_1} - {x_2}} \\right| < \\epsilon \n\\\\\n\\text{take } \\delta = \\epsilon, \\text{ then } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| < \\epsilon \\text{ whenever } \\left| {{x_1} - {x_2}} \\right| < \\delta \n\\\\\n\\therefore f \\text{ is uniformly continuous}\n\\\\\n\\text{Question 4}\n\n\\\\\n\\text{\\textbf{Proof} } \\text{Since } x \\text{ is continuous on } I \\text{and } x\\ne0 \\text{ in } I\n\\\\\n\\therefore \\frac{1}{x} \\text{ is continuous}.\n\\\\\n\\text{Now, for any } \\delta>0 ~\\exist m\\in \\mathbb{N} \\text{ such that } \\frac{1}{n}<\\delta ~\\forall n>m\n\\\\\n\\hspace{30pt} \\text{Let } {x_1} = \\frac{1}{{2m}} \\text{ and } {x_2} = \\frac{1}{m} \\text{ so that} x_1,x_2\\in I\n\\\\\n\\hspace{30pt} \\text{and } \\left| {{x_1} - {x_2}} \\right| = \\left| {\\frac{1}{{2m}} - \\frac{1}{m}} \\right| = \\frac{1}{{2m}} < \\delta \n\\\\\n\\text{ but } \\left| {f\\left( {{x_1}} \\right) - f\\left( {{x_2}} \\right)} \\right| = \\left| {2m - m} \\right| = m \\text{ which cannot be less than } \\epsilon > 0\n\\\\\n\\therefore f \\text{ is \\textbf{not} uniformly continuous.}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog