Find the dimensions of the right circular cone of the greatest lateral area that can be inscribed in a sphere of radius α
Given, a cone inscribed in a sphere of radius a.
Let the radius, height and slant height of cone be "r,h,l" respectively.
"OB=OA=a,BC=r,AC=h,OC=h-a,AB=l"
Using pythagoras theorem in triangle BOC,
"BC^2+CO^2=OB^2\n\\\\\\Rightarrow r^2+(h-a)^2=a^2\n\\\\\\Rightarrow r^2+h^2+a^2-2ha=a^2\n\\\\\\Rightarrow r^2+h^2=2ha \\ ...(i)"
Using pythagoras theorem in triangle BAC,
"BC^2+CA^2=AB^2\n\\\\\\Rightarrow r^2+h^2=l^2\\ ...(ii)"
From (i) and (ii)
"2ha=l^2"
Now, lateral area of cone, "L=\\pi rl"
"L^2=\\pi^2 r^2 l^2\n\\\\=\\pi^2 (l^2-h^2)l^2\\ [From\\ (ii)] \n\\\\=\\pi^2(2ha-h^2)(2ha)\n\\\\=\\pi^2(4h^2a^2-2h^3a)"
On differentiating w.r.t. h
"2L\\dfrac{dL}{dh}=\\pi^2(8ha^2-6h^2a) ...(iii)\n\\\\ \\Rightarrow\\dfrac{dL}{dh}=\\dfrac{\\pi^2 (2ha\\pi^2 (4a-3h))}{2L}"
Now, put "\\dfrac{dL}{dh}=0"
"\\\\ \\Rightarrow\\dfrac{\\pi^2 (2ha\\pi^2 (4a-3h))}{2L}=0\n\\\\ \\Rightarrow 4a-3h=0\n\\\\ \\Rightarrow h=\\dfrac{4a}3\\ ...(iv)"
Again, differentiating (iii) w.r.t h,
"2L\\dfrac{d^2L}{dh^2}+2(\\dfrac{dL}{dh})^2=\\pi^2(8a^2-12ha)\n\\\\=\\pi^2(8a^2-12a(\\dfrac{4a}3))\\ [Using\\ (iv)]\n\\\\=-8\\pi^2a^2<0\n\\\\\\Rightarrow\\ maxima"
Put (iv) in (i)
"\\\\r^2+(\\dfrac{4a}3)^2=2(\\dfrac{4a}3)a \n\\\\\\Rightarrow r^2=\\dfrac{8a^2}3-\\dfrac{16a^2}9\n\\\\\\Rightarrow r^2=\\dfrac{8a^2}9\n\\\\\\Rightarrow r=\\dfrac{2\\sqrt2a}3"
Thus, the dimensions of cone are "r=\\dfrac{2\\sqrt2a}3;h=\\dfrac{4a}3"
Comments
Leave a comment