Answer to Question #280248 in Calculus for STAY

Question #280248

Find the dimensions of the right circular cone of the greatest lateral area that can be inscribed in a sphere of radius α


1
Expert's answer
2021-12-16T17:08:29-0500

Solution:


Given, a cone inscribed in a sphere of radius a.

Let the radius, height and slant height of cone be "r,h,l" respectively.

"OB=OA=a,BC=r,AC=h,OC=h-a,AB=l"

Using pythagoras theorem in triangle BOC,

"BC^2+CO^2=OB^2\n\\\\\\Rightarrow r^2+(h-a)^2=a^2\n\\\\\\Rightarrow r^2+h^2+a^2-2ha=a^2\n\\\\\\Rightarrow r^2+h^2=2ha \\ ...(i)"

Using pythagoras theorem in triangle BAC,

"BC^2+CA^2=AB^2\n\\\\\\Rightarrow r^2+h^2=l^2\\ ...(ii)"

From (i) and (ii)

"2ha=l^2"

Now, lateral area of cone, "L=\\pi rl"

"L^2=\\pi^2 r^2 l^2\n\\\\=\\pi^2 (l^2-h^2)l^2\\ [From\\ (ii)] \n\\\\=\\pi^2(2ha-h^2)(2ha)\n\\\\=\\pi^2(4h^2a^2-2h^3a)"

On differentiating w.r.t. h

"2L\\dfrac{dL}{dh}=\\pi^2(8ha^2-6h^2a) ...(iii)\n\\\\ \\Rightarrow\\dfrac{dL}{dh}=\\dfrac{\\pi^2 (2ha\\pi^2 (4a-3h))}{2L}"

Now, put "\\dfrac{dL}{dh}=0"

"\\\\ \\Rightarrow\\dfrac{\\pi^2 (2ha\\pi^2 (4a-3h))}{2L}=0\n\\\\ \\Rightarrow 4a-3h=0\n\\\\ \\Rightarrow h=\\dfrac{4a}3\\ ...(iv)"

Again, differentiating (iii) w.r.t h,

"2L\\dfrac{d^2L}{dh^2}+2(\\dfrac{dL}{dh})^2=\\pi^2(8a^2-12ha)\n\\\\=\\pi^2(8a^2-12a(\\dfrac{4a}3))\\ [Using\\ (iv)]\n\\\\=-8\\pi^2a^2<0\n\\\\\\Rightarrow\\ maxima"

Put (iv) in (i)

"\\\\r^2+(\\dfrac{4a}3)^2=2(\\dfrac{4a}3)a \n\\\\\\Rightarrow r^2=\\dfrac{8a^2}3-\\dfrac{16a^2}9\n\\\\\\Rightarrow r^2=\\dfrac{8a^2}9\n\\\\\\Rightarrow r=\\dfrac{2\\sqrt2a}3"

Thus, the dimensions of cone are "r=\\dfrac{2\\sqrt2a}3;h=\\dfrac{4a}3"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog