Given, a cone inscribed in a sphere of radius a.
Let the radius, height and slant height of cone be r,h,l respectively.
OB=OA=a,BC=r,AC=h,OC=h−a,AB=l
Using pythagoras theorem in triangle BOC,
BC2+CO2=OB2⇒r2+(h−a)2=a2⇒r2+h2+a2−2ha=a2⇒r2+h2=2ha ...(i)
Using pythagoras theorem in triangle BAC,
BC2+CA2=AB2⇒r2+h2=l2 ...(ii)
From (i) and (ii)
2ha=l2
Now, lateral area of cone, L=πrl
L2=π2r2l2=π2(l2−h2)l2 [From (ii)]=π2(2ha−h2)(2ha)=π2(4h2a2−2h3a)
On differentiating w.r.t. h
2LdhdL=π2(8ha2−6h2a)...(iii)⇒dhdL=2Lπ2(2haπ2(4a−3h))
Now, put dhdL=0
⇒2Lπ2(2haπ2(4a−3h))=0⇒4a−3h=0⇒h=34a ...(iv)
Again, differentiating (iii) w.r.t h,
2Ldh2d2L+2(dhdL)2=π2(8a2−12ha)=π2(8a2−12a(34a)) [Using (iv)]=−8π2a2<0⇒ maxima
Put (iv) in (i)
r2+(34a)2=2(34a)a⇒r2=38a2−916a2⇒r2=98a2⇒r=322a
Thus, the dimensions of cone are r=322a;h=34a
Comments