Answer to Question #280241 in Calculus for ash

Question #280241

if f(x) = { x/tan2x, x>0 , x+2, x≥ 0

find the type of discontinuity and state whether it is continuous



1
Expert's answer
2021-12-16T17:03:46-0500

Assume given function as:

f(x) = { x/tan2x, x<0 , x+2, x≥ 0

Solution:

"LHL=\\lim_{x\\rightarrow0^-}\\dfrac x{\\tan 2x}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {0-h}{\\tan 2(0-h)}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {-h}{-\\tan 2h}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {h}{\\tan 2h}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {1}{\\dfrac{\\tan 2h}{2h}\\times 2}\n\\\\=\\dfrac {1}{1\\times 2} [\\because \\lim_{x\\rightarrow0}\\dfrac{\\tan x}{x}=1]\n\\\\=\\dfrac 12"

"RHL=\\lim_{x\\rightarrow0^+} (x+2)\n\\\\=\\lim_{h\\rightarrow0} (0+h+2)\n\\\\=\\lim_{h\\rightarrow0}\\ 2\n\\\\=2"

"\\because LHL\\ne RHL"

"\\\\\\therefore" Given function is discontinuous at "x=0" which is jump discontinuity.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog