Question #280241

if f(x) = { x/tan2x, x>0 , x+2, x≥ 0

find the type of discontinuity and state whether it is continuous



1
Expert's answer
2021-12-16T17:03:46-0500

Assume given function as:

f(x) = { x/tan2x, x<0 , x+2, x≥ 0

Solution:

LHL=limx0xtan2x=limh00htan2(0h)=limh0htan2h=limh0htan2h=limh01tan2h2h×2=11×2[limx0tanxx=1]=12LHL=\lim_{x\rightarrow0^-}\dfrac x{\tan 2x} \\=\lim_{h\rightarrow0}\dfrac {0-h}{\tan 2(0-h)} \\=\lim_{h\rightarrow0}\dfrac {-h}{-\tan 2h} \\=\lim_{h\rightarrow0}\dfrac {h}{\tan 2h} \\=\lim_{h\rightarrow0}\dfrac {1}{\dfrac{\tan 2h}{2h}\times 2} \\=\dfrac {1}{1\times 2} [\because \lim_{x\rightarrow0}\dfrac{\tan x}{x}=1] \\=\dfrac 12

RHL=limx0+(x+2)=limh0(0+h+2)=limh0 2=2RHL=\lim_{x\rightarrow0^+} (x+2) \\=\lim_{h\rightarrow0} (0+h+2) \\=\lim_{h\rightarrow0}\ 2 \\=2

LHLRHL\because LHL\ne RHL

\\\therefore Given function is discontinuous at x=0x=0 which is jump discontinuity.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS