if f(x) = { x/tan2x, x>0 , x+2, x≥ 0
find the type of discontinuity and state whether it is continuous
Assume given function as:
f(x) = { x/tan2x, x<0 , x+2, x≥ 0
"LHL=\\lim_{x\\rightarrow0^-}\\dfrac x{\\tan 2x}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {0-h}{\\tan 2(0-h)}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {-h}{-\\tan 2h}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {h}{\\tan 2h}\n\\\\=\\lim_{h\\rightarrow0}\\dfrac {1}{\\dfrac{\\tan 2h}{2h}\\times 2}\n\\\\=\\dfrac {1}{1\\times 2} [\\because \\lim_{x\\rightarrow0}\\dfrac{\\tan x}{x}=1]\n\\\\=\\dfrac 12"
"RHL=\\lim_{x\\rightarrow0^+} (x+2)\n\\\\=\\lim_{h\\rightarrow0} (0+h+2)\n\\\\=\\lim_{h\\rightarrow0}\\ 2\n\\\\=2"
"\\because LHL\\ne RHL"
"\\\\\\therefore" Given function is discontinuous at "x=0" which is jump discontinuity.
Comments
Leave a comment