Question #279226

Derive a formula for Summation n i=1 i3 by using a telescoping sum with terms f(i)=i2

1
Expert's answer
2021-12-14T11:37:14-0500

i⁴ - (i-1)⁴ = i⁴ - (i⁴ - 4i³ + 6i² - 4i + 1)

=> i⁴ - (i-1)⁴ = i⁴ - i⁴ + 4i³ - 6i² + 4i - 1

=> i⁴ - (i-1)⁴ = 4i³ - 6i² + 4i - 1

Taking sum over i = 1 to n

i=1n\sum_{i=1}^{n} {i⁴ - (i-1)⁴ }= i=1n\sum_{i=1}^{n}{4i³- 6i²+4i - 1}

=> n⁴ - 0⁴ = i=1n4i3i=1n6i2+i=1n4ii=1n1\sum_{i=1}^{n}4i³-\sum_{i=1}^{n} 6i² +\sum_{i=1}^{n} 4i - \sum_{i=1}^{n} 1

=> n⁴ = 4i=1ni36i=1ni2+4i=1nii=1n14\sum_{i=1}^{n}i³-6\sum_{i=1}^{n} i² +4\sum_{i=1}^{n} i - \sum_{i=1}^{n} 1

=> n⁴ = 4i=1ni34\sum_{i=1}^{n}i³- 6.n(n+1)(2n+1)6\frac{n(n+1)(2n+1)}{6} + 4.n(n+1)2n4.\frac{n(n+1)}{2}-n

=> n⁴ = 4i=1ni34\sum_{i=1}^{n}i³ - n(n+1)(2n+1) + 2n(n+1) - n

=> 4i=1ni34\sum_{i=1}^{n}i³ = n⁴ + n(n+1)(2n+1) - 2n(n+1) + n

=> 4i=1ni34\sum_{i=1}^{n}i³ = n⁴ + 2n³ + 3n² + n - 2n² - 2n + n

=> 4i=1ni34\sum_{i=1}^{n}i³ = n⁴ + 2n³ + n²

=> 4i=1ni34\sum_{i=1}^{n}i³ = (n² + n)²

=> 4i=1ni34\sum_{i=1}^{n}i³ = {n(n+1)}²

=> i=1ni3\sum_{i=1}^{n}i³ = n2(n+1)24\frac{ {n²(n+1)}²}{4}

=> i=1ni3=\sum_{i=1}^{n}i³ = [n(n+1)2]2[\frac{n(n+1)}{2}]²



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS