i⁴ - (i-1)⁴ = i⁴ - (i⁴ - 4i³ + 6i² - 4i + 1)
=> i⁴ - (i-1)⁴ = i⁴ - i⁴ + 4i³ - 6i² + 4i - 1
=> i⁴ - (i-1)⁴ = 4i³ - 6i² + 4i - 1
Taking sum over i = 1 to n
∑i=1n {i⁴ - (i-1)⁴ }= ∑i=1n{4i³- 6i²+4i - 1}
=> n⁴ - 0⁴ = ∑i=1n4i3−∑i=1n6i2+∑i=1n4i−∑i=1n1
=> n⁴ = 4∑i=1ni3−6∑i=1ni2+4∑i=1ni−∑i=1n1
=> n⁴ = 4∑i=1ni3− 6.6n(n+1)(2n+1) + 4.2n(n+1)−n
=> n⁴ = 4∑i=1ni3 - n(n+1)(2n+1) + 2n(n+1) - n
=> 4∑i=1ni3 = n⁴ + n(n+1)(2n+1) - 2n(n+1) + n
=> 4∑i=1ni3 = n⁴ + 2n³ + 3n² + n - 2n² - 2n + n
=> 4∑i=1ni3 = n⁴ + 2n³ + n²
=> 4∑i=1ni3 = (n² + n)²
=> 4∑i=1ni3 = {n(n+1)}²
=> ∑i=1ni3 = 4n2(n+1)2
=> ∑i=1ni3= [2n(n+1)]2
Comments