Question #279186

Find critical points of f (x,y) = 1/4x^2 -4xy^2 - 2x^2 +8y^2

1
Expert's answer
2021-12-14T08:38:57-0500

f(x,y)=14x24xy22x2+8y2f (x,y) = \dfrac{1}{4x^2} -4xy^2 - 2x^2 +8y^2

x0x\not=0

fx=12x34y24x\dfrac{\partial f}{\partial x}=-\dfrac{1}{2x^3}-4y^2-4x

fy=8xy+16y\dfrac{\partial f}{\partial y}=-8xy+16y

Find critical point(s)


{fx=0fx=0=>{12x34y24x=08xy+16y=0\begin{cases} \dfrac{\partial f}{\partial x}=0 \\ \\ \dfrac{\partial f}{\partial x}=0 \end{cases}=>\begin{cases} -\dfrac{1}{2x^3}-4y^2-4x=0 \\ \\ -8xy+16y=0 \end{cases}

y=0=>12x304x=0y=0=>-\dfrac{1}{2x^3}-0-4x=0

12x3=4x-\dfrac{1}{2x^3}=4x

8x4=1,No solution8x^4=-1, No\ solution

x=2=>12(2)34y24(2)=0x=2=>-\dfrac{1}{2(2)^3}-4y^2-4(2)=0

4y2=12916,No solution4y^2=-\dfrac{129}{16}, No\ solution

There are no critical points.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS