Question #280082

a)     Determine the Laplace transforms of the following functions


(i) f(t) = t3-2t

(ii) f(t) = sin3t-e2t

(iii) f(t) = e2t sinh4t



b) Find the Laplace transform of the following

(i) f(t) = 3e-4t- 5e4t

(ii) f(t) = t sin 3t + cos 4t


find the inverse transform of

(i) F (s) = 2/3-1/2s-3

(ii) F (s) = 5s-8/s(s-4), using partial fractions.


1
Expert's answer
2021-12-16T11:21:46-0500

a)     

(i) f(t)=t32tf(t) = t^3-2t


F(s)=L{t32t}F(s)=L\{t^3-2t\}

=6s42s2=\dfrac{6}{s^4}-\dfrac{2}{s^2}

ii) f(t)=sin(3t)e2tf(t) = \sin(3t)-e^{2t}


F(s)=L{sin(3t)e2t}F(s)=L\{\sin(3t)-e^{2t}\}

=3s2+91s2=\dfrac{3}{s^2+9}-\dfrac{1}{s-2}

iii) f(t)=e2tsinh(4t)f(t) = e^{2t}\sinh(4t)


F(s)=L{e2tsinh(4t)}F(s)=L\{e^{2t}\sinh(4t)\}

=4(s2)216=\dfrac{4}{(s-2)^2-16}

b)

(i) f(t)=3e4t5e4tf(t) = 3e^{-4t}- 5e^{4t}


F(s)=L{3e4t5e4t}F(s)=L\{3e^{-4t}- 5e^{4t}\}

=3s+45s4=\dfrac{3}{s+4}-\dfrac{5}{s-4}

(ii) f(t)=tsin(3t)+cos(4t)f(t) = t\sin(3t)+\cos(4t)


F(s)=L{tsin(3t)+cos(4t)}F(s)=L\{ t\sin(3t)+\cos(4t)\}

=6s(s2+9)2ss2+16=\dfrac{6s}{(s^2+9)^2}-\dfrac{s}{s^2+16}

c)

(i) F(s)=2312s3F (s) =\dfrac{2}{3}-\dfrac{1}{2s-3}


f(t)=L1{2312s3}f(t)=L^{-1}\{\dfrac{2}{3}-\dfrac{1}{2s-3}\}

=23δ(t)12e3t/2=\dfrac{2}{3}\delta(t)-\dfrac{1}{2}e^{3t/2}

(ii) F(s)=5s8s(s4)F (s) =\dfrac{5s-8}{s(s-4)}


5s8s(s4)=As+Bs4=A(s4)+Bss(s4)\dfrac{5s-8}{s(s-4)}=\dfrac{A}{s}+\dfrac{B}{s-4}=\dfrac{A(s-4)+Bs}{s(s-4)}

s=0:4A=8=>A=2s=0:-4A=-8=>A=2

s=0:4B=12=>B=3s=0:4B=12=>B=3

f(t)=L1{5s8s(s4)}=L1{2s}+L1{3s4}f(t)=L^{-1}\{\dfrac{5s-8}{s(s-4)}\}=L^{-1}\{\dfrac{2}{s}\}+L^{-1}\{\dfrac{3}{s-4}\}

=2+3e4t=2+3e^{4t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS