a) Determine the Laplace transforms of the following functions
(i) f(t) = t3-2t
(ii) f(t) = sin3t-e2t
(iii) f(t) = e2t sinh4t
b) Find the Laplace transform of the following
(i) f(t) = 3e-4t- 5e4t
(ii) f(t) = t sin 3t + cos 4t
find the inverse transform of
(i) F (s) = 2/3-1/2s-3
(ii) F (s) = 5s-8/s(s-4), using partial fractions.
a)
(i) "f(t) = t^3-2t"
"=\\dfrac{6}{s^4}-\\dfrac{2}{s^2}"
ii) "f(t) = \\sin(3t)-e^{2t}"
"=\\dfrac{3}{s^2+9}-\\dfrac{1}{s-2}"
iii) "f(t) = e^{2t}\\sinh(4t)"
"=\\dfrac{4}{(s-2)^2-16}"
b)
(i) "f(t) = 3e^{-4t}- 5e^{4t}"
"=\\dfrac{3}{s+4}-\\dfrac{5}{s-4}"
(ii) "f(t) = t\\sin(3t)+\\cos(4t)"
"=\\dfrac{6s}{(s^2+9)^2}-\\dfrac{s}{s^2+16}"
c)
(i) "F (s) =\\dfrac{2}{3}-\\dfrac{1}{2s-3}"
"=\\dfrac{2}{3}\\delta(t)-\\dfrac{1}{2}e^{3t\/2}"
(ii) "F (s) =\\dfrac{5s-8}{s(s-4)}"
"s=0:-4A=-8=>A=2"
"s=0:4B=12=>B=3"
"f(t)=L^{-1}\\{\\dfrac{5s-8}{s(s-4)}\\}=L^{-1}\\{\\dfrac{2}{s}\\}+L^{-1}\\{\\dfrac{3}{s-4}\\}"
"=2+3e^{4t}"
Comments
Leave a comment