Find the volume in the first octant bounded by x+y+z=9, and the inside cylinder 3y=27-x^3
Denote by "W" the region in the first octant bounded by "x+y+z=9" and the inside cylinder "3y=27-\\frac { { x }^{ 3 } }{ 3 }" .
"Volume (W)=\\iint _{ D }^{ \\ }{ (9-x-y)dydx }" , where "D={ D }_{ 1 }\\cup { D }_{ 2 }\\quad", "{ D }_{ 1 }=\\ \\left\\{ \\left( x,y \\right) :0\\le x\\le \\sqrt { 3 } ,0\\le y\\le 9-x \\right\\} \\ ,\\\\{ D }_{ 2 }=\\ \\left\\{ \\left( x,y \\right) :\\sqrt { 3 } \\le x\\le 3,\\quad 0\\le y\\le 9-\\frac { { x }^{ 3 } }{ 3 } \\right\\}."
"\\iint _{ { D }_{ 1 } }^{ \\ }{ (9-x-y)dydx\\ =\\int _{ 0 }^{ \\sqrt { 3 } }{ \\left( \\int _{ 0 }^{ 9-x }{ (\\ 9-x } -y)dy \\right) dx\\quad = } }" "=\\int _{ 0 }^{ \\sqrt { 3 } }{ \\left[ { (9-x) }^{ 2 }-\\frac { { (9-x) }^{ 2 } }{ 2 } \\right] dx=\\int _{ 0 }^{ \\sqrt { 3 } }{ \\left[ \\frac { { (9-x) }^{ 2 } }{ 2 } \\right] dx=\\ { \\left[ -\\frac { { (9-x) }^{ 3 } }{ 6 } \\right] }_{ 0 }^{ \\sqrt { 3 } } } =\\quad }" "=\\left[ -\\frac { { (9-\\sqrt { 3 } ) }^{ 3 } }{ 6 } \\right] +\\frac { { 9 }^{ 3 } }{ 6 }" "=41\\sqrt { 3 } -\\frac { 27 }{ 2 }" "=41\\sqrt { 3 } -\\frac { 945 }{ 70 }" ,
"\\iint _{ { D }_{ 2 } }^{ \\ }{ (9-x-y)dydx\\ =\\ }"
"\\int _{ \\sqrt { 3 } }^{ 3 }{ \\left( \\int _{ 0 }^{ 9-\\frac { { x }^{ 3 } }{ 3 } }{ (\\ 9-x } -y)dy \\right) dx\\ = } \\ \\int _{ \\sqrt { 3 } }^{ 3 }{ \\left[ (9-x)\\left( 9-\\frac { { x }^{ 3 } }{ 3 } \\right) -\\frac { { \\left( 9-\\frac { { x }^{ 3 } }{ 3 } \\right) }^{ 2 } }{ 2 } \\right] } dx\\ ="
"=\\int _{ \\sqrt { 3 } }^{ 3 }{ \\left[ 81-9x-3{ x }^{ 3 }+\\frac { { x }^{ 4 } }{ 3 } -\\frac { 1 }{ 2 } \\left( 81-6{ x }^{ 3 }+\\frac { { x }^{ 6 } }{ 9 } \\right) \\right] } dx=" "{ \\left[ \\frac { 81 }{ 2 } x-\\frac { { 9x }^{ 2 } }{ 2 } +\\frac { { x }^{ 5 } }{ 15 } -\\frac { { x }^{ 7 } }{ 126 } \\right] }_{ \\sqrt { 3 } }^{ 3 }=" "=\\left( \\frac { 243-81 }{ 2 } +\\frac { 243 }{ 15 } -\\frac { 2187 }{ 126 } \\right) -\\left( \\frac { 81 }{ 2 } \\sqrt { 3 } -\\frac { 27 }{ 2 } +\\frac { 3\\sqrt { 3 } }{ \\quad 5 } -\\frac { 3\\sqrt { 3 } }{ \\quad 14 } \\right) =" "\\ \\frac { 3267 }{ 35 } \\ -\\frac { 1431 }{ 35 } \\sqrt { 3 } ."
Therefore , "Volume (W)=\\iint _{ D }^{ \\ }{ (9-x-y)dydx } ="
"\\iint _{ { D }_{ 1 } }^{ \\ }{ (9-x-y)dydx+\\iint _{ { D }_{ 2} }^{ \\ }{ (9-x-y)dydx \\ = } }"
"=\\ \\frac { 5589 }{ 70 } +4\\sqrt { 3 } \\quad \\approx 79.84+6.93=86.77\\quad \\quad"
Comments
Leave a comment