(a) Evaluateβ«[
π/(π^2+π)^(1/2)π π.
(b) Use MATLAB to generate some typical integral curves of π(π₯) =
π/(π^2+π)^(1/2)π πover the interval (β5,5).
(a):
I=β«xx2+1dxI=\int \dfrac{x}{\sqrt{x^2+1}}dxI=β«x2+1βxβdx
Put x2+1=tx^2+1=tx2+1=t
β2xdx=dtβxdx=dt2\Rightarrow 2xdx=dt \\\Rightarrow xdx=\dfrac{dt}{2}β2xdx=dtβxdx=2dtβ
So, I=12β«1tdtI=\dfrac{1}{2}\int \dfrac{1}{\sqrt{t}}dtI=21ββ«tβ1βdt
I=12β«tβ1/2dt=12.t1/21/2+c=t+c=x2+1+cI=\dfrac{1}{2}\int t^{-1/2}dt \\=\dfrac{1}{2}.\dfrac{t^{1/2}}{1/2}+c \\=\sqrt t+c \\=\sqrt{x^2+1}+cI=21ββ«tβ1/2dt=21β.1/2t1/2β+c=tβ+c=x2+1β+c
(b):
The graph using matlab from (-5,5) is as follows:
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment