Question: Find an approximate value of the double integral below where π
is the rectangular region having
vertices (β1, 1) and (2, 3). Take a partition of π
formed by the lines π₯ = 0, π₯ = 1, and π¦ = 2, and take (π’π, π£π) at the center of the πth sub region.
β¬(3π¦ β 2π₯^2)ππ΄
π

β«β«Rβ(3yβ2x2)dA=β«x=β1x=2ββ«y=1y=3β(3yβ2x2)dxdy=β«x=β1x=2β(23y2ββ2x2y)β£y=1y=3βdx=β«x=β1x=2β[(23(3)2ββ2x2(3))β(23(1)2ββ2x2(1))]dx=β«x=β1x=2β[(227ββ6x2)β(23ββ2x2)]dx=β«x=β1x=2β(12β4x2)dx=(12xβ34x3β)β£x=β1x=2β=(12(2)β34(2)3β)β(12(β1)β34(β1)3β)=(24β332β)β(β12+34β)=36β12=24 sq. units
Comments