Question #280675

Find an approximate value of the double integral below where 𝑅 is the rectangular region having



vertices (βˆ’1, 1) and (2, 3). Take a partition of 𝑅 formed by the lines π‘₯ = 0, π‘₯ = 1, and 𝑦 = 2, and take (𝑒𝑖



, 𝑣𝑖) at the



center of the 𝑖th sub region.



∬(3𝑦 βˆ’ 2π‘₯



2)𝑑𝐴



𝑅



1
Expert's answer
2022-02-01T12:35:49-0500

Question: Find an approximate value of the double integral below where 𝑅 is the rectangular region having

vertices (βˆ’1, 1) and (2, 3). Take a partition of 𝑅 formed by the lines π‘₯ = 0, π‘₯ = 1, and 𝑦 = 2, and take (𝑒𝑖, 𝑣𝑖) at the center of the 𝑖th sub region.

∬(3𝑦 βˆ’ 2π‘₯^2)𝑑𝐴

𝑅

Solution:

∫∫R(3yβˆ’2x2)dA=∫x=βˆ’1x=2∫y=1y=3(3yβˆ’2x2)dxdy=∫x=βˆ’1x=2(3y22βˆ’2x2y)∣y=1y=3dx=∫x=βˆ’1x=2[(3(3)22βˆ’2x2(3))βˆ’(3(1)22βˆ’2x2(1))]dx=∫x=βˆ’1x=2[(272βˆ’6x2)βˆ’(32βˆ’2x2)]dx=∫x=βˆ’1x=2(12βˆ’4x2)dx=(12xβˆ’4x33)∣x=βˆ’1x=2=(12(2)βˆ’4(2)33)βˆ’(12(βˆ’1)βˆ’4(βˆ’1)33)=(24βˆ’323)βˆ’(βˆ’12+43)=36βˆ’12=24 sq. units\int\int_R(3y-2x^2)dA \\=\int_{x=-1}^{x=2}\int_{y=1}^{y=3}(3y-2x^2)dxdy \\=\int_{x=-1}^{x=2}(\dfrac{3y^2}2-2x^2y)|_{y=1}^{y=3}dx \\=\int_{x=-1}^{x=2}[(\dfrac{3(3)^2}2-2x^2(3))-(\dfrac{3(1)^2}2-2x^2(1))]dx \\=\int_{x=-1}^{x=2}[(\dfrac{27}2-6x^2)-(\dfrac{3}2-2x^2)]dx \\=\int_{x=-1}^{x=2}(12-4x^2)dx \\=(12x-\dfrac{4x^3}3)|_{x=-1}^{x=2} \\=(12(2)-\dfrac{4(2)^3}3)-(12(-1)-\dfrac{4(-1)^3}3) \\=(24-\dfrac{32}3)-(-12+\dfrac{4}3) \\=36-12 \\=24\ sq.\ units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS