F ( x ) = ∫ 0 x ( t − 3 t 2 + 7 ) d t F(x)=\displaystyle\int_{0}^x(t-3t^2+7)dt F ( x ) = ∫ 0 x ( t − 3 t 2 + 7 ) d t
By the Fundamental Theorem of Calculus
F ′ ( x ) = x − 3 x 2 + 7 F'(x)=x-3x^2+7 F ′ ( x ) = x − 3 x 2 + 7 Find the critical points of F ( x ) F(x) F ( x )
F ′ ( x ) = 0 = > x − 3 x 2 + 7 = 0 F'(x)=0=>x-3x^2+7=0 F ′ ( x ) = 0 => x − 3 x 2 + 7 = 0
3 x 2 − x − 7 = 0 3x^2-x-7=0 3 x 2 − x − 7 = 0
D = ( − 1 ) 2 − 4 ( 3 ) ( − 7 ) = 85 D=(-1)^2-4(3)(-7)=85 D = ( − 1 ) 2 − 4 ( 3 ) ( − 7 ) = 85
x = 1 ± 85 2 ( 3 ) x=\dfrac{1\pm\sqrt{85}}{2(3)} x = 2 ( 3 ) 1 ± 85
x 1 = 1 − 85 6 , x 2 = 1 + 85 6 x_1=\dfrac{1-\sqrt{85}}{6}, x_2=\dfrac{1+\sqrt{85}}{6} x 1 = 6 1 − 85 , x 2 = 6 1 + 85 If x < 1 − 85 6 , F ′ ( x ) < 0 , F ( x ) x<\dfrac{1-\sqrt{85}}{6}, F'(x)<0, F(x) x < 6 1 − 85 , F ′ ( x ) < 0 , F ( x ) decreases.
If 1 − 85 6 < x < 1 + 85 6 , F ′ ( x ) > 0 , F ( x ) \dfrac{1-\sqrt{85}}{6}<x<\dfrac{1+\sqrt{85}}{6}, F'(x)>0, F(x) 6 1 − 85 < x < 6 1 + 85 , F ′ ( x ) > 0 , F ( x ) increases.
If x > 1 + 85 6 , F ′ ( x ) < 0 , F ( x ) x>\dfrac{1+\sqrt{85}}{6}, F'(x)<0, F(x) x > 6 1 + 85 , F ′ ( x ) < 0 , F ( x ) decreases.
(a)The function F ( x ) F(x) F ( x ) has the local minimum at x = 1 − 85 6 . x=\dfrac{1-\sqrt{85}}{6}. x = 6 1 − 85 .
(b) The function F ( x ) F(x) F ( x ) increases on
( 1 − 85 6 , 1 + 85 6 ) . (\dfrac{1-\sqrt{85}}{6}, \dfrac{1+\sqrt{85}}{6}). ( 6 1 − 85 , 6 1 + 85 ) . The function F ( x ) F(x) F ( x ) decreases on
( − ∞ , 1 − 85 6 ) ∪ ( 1 + 85 6 , ∞ ) (-\infin, \dfrac{1-\sqrt{85}}{6})\cup(\dfrac{1+\sqrt{85}}{6}, \infin) ( − ∞ , 6 1 − 85 ) ∪ ( 6 1 + 85 , ∞ )
(c)
F ′ ′ ( x ) = ( x − 3 x 2 + 7 ) ′ = 1 − 6 x F''(x)=(x-3x^2+7)'=1-6x F ′′ ( x ) = ( x − 3 x 2 + 7 ) ′ = 1 − 6 x Find the inflection point(s)
F ′ ′ ( x ) = 0 = > 1 − 6 x = 0 = > x = 1 6 F''(x)=0=>1-6x=0=>x=\dfrac{1}{6} F ′′ ( x ) = 0 => 1 − 6 x = 0 => x = 6 1 If x < 1 6 , F ′ ′ ( x ) > 0 , F ( x ) x<\dfrac{1}{6}, F''(x)>0, F(x) x < 6 1 , F ′′ ( x ) > 0 , F ( x ) is concave up.
If x > 1 6 , F ′ ′ ( x ) < 0 , F ( x ) x>\dfrac{1}{6}, F''(x)<0, F(x) x > 6 1 , F ′′ ( x ) < 0 , F ( x ) is concave down.
The function F ( x ) F(x) F ( x ) is only concave up on ( − ∞ , 1 6 ) . (-\infin, \dfrac{1}{6}). ( − ∞ , 6 1 ) .
The function F ( x ) F(x) F ( x ) is only concave down on ( 1 6 , ∞ ) . (\dfrac{1}{6}, \infin). ( 6 1 , ∞ ) .
Comments