Minimum distance. Find the minimum distance from a point on the
positive x-axis (a, 0) to the parabola y^2 = 8x.
Given parabola y² = 8x
and the point (a,0).
Let P(x, y) be any point on the parabola.
"d = \\sqrt{(x \u2212 a ) \u00b2 + y\u00b2}"
"D=d\u00b2 = (x-a)\u00b2 + y\u00b2"
"D(x)= (x \u2212 a)\u00b2 +8x"
Differentiate with respect to x
"D'(x) = 2(x-a)+8"
"D'(x) = 0"
"2(x-a)+8=0"
"x-a=-4"
"x = -4+a"
"D'(x) = 2(x-a)+8"
Differentiate with respect to x
"D''(x) = 2x"
"D''(-4+a)= 2(-4+a)= -8+a"
If a > 8 then D"(-4+a) >0
The minimum distance is
"\\sqrt{(-4+a-a)\u00b2 +8(-4+a)}"
="\\sqrt{16-12+8a}"
= "\\sqrt{4+8a}"
Comments
Leave a comment