Given parabola y² = 8x
and the point (a,0).
Let P(x, y) be any point on the parabola.
d = ( x − a ) 2 + y 2 d = \sqrt{(x − a ) ² + y²} d = ( x − a ) 2 + y 2
D = d 2 = ( x − a ) 2 + y 2 D=d² = (x-a)² + y² D = d 2 = ( x − a ) 2 + y 2
D ( x ) = ( x − a ) 2 + 8 x D(x)= (x − a)² +8x D ( x ) = ( x − a ) 2 + 8 x
Differentiate with respect to x
D ′ ( x ) = 2 ( x − a ) + 8 D'(x) = 2(x-a)+8 D ′ ( x ) = 2 ( x − a ) + 8
D ′ ( x ) = 0 D'(x) = 0 D ′ ( x ) = 0
2 ( x − a ) + 8 = 0 2(x-a)+8=0 2 ( x − a ) + 8 = 0
x − a = − 4 x-a=-4 x − a = − 4
x = − 4 + a x = -4+a x = − 4 + a
D ′ ( x ) = 2 ( x − a ) + 8 D'(x) = 2(x-a)+8 D ′ ( x ) = 2 ( x − a ) + 8
Differentiate with respect to x
D ′ ′ ( x ) = 2 x D''(x) = 2x D ′′ ( x ) = 2 x
D ′ ′ ( − 4 + a ) = 2 ( − 4 + a ) = − 8 + a D''(-4+a)= 2(-4+a)= -8+a D ′′ ( − 4 + a ) = 2 ( − 4 + a ) = − 8 + a
If a > 8 then D"(-4+a) >0
The minimum distance is
( − 4 + a − a ) 2 + 8 ( − 4 + a ) \sqrt{(-4+a-a)² +8(-4+a)} ( − 4 + a − a ) 2 + 8 ( − 4 + a )
=16 − 12 + 8 a \sqrt{16-12+8a} 16 − 12 + 8 a
= 4 + 8 a \sqrt{4+8a} 4 + 8 a
Comments